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Simple Games in a Complex World:
A Generative Approach to the Adoption
of Norms

Randal C. Pickert

Uncovering the boundaries of legal rules and defining their
proper limits have traditionally vexed students of the law. When
must we regulate? When will behavior coalesce in an appropriate
way without the intervention of law? These are big questions, as
the recent explosion of norms literature makes clear.' | do not try
to answer these questions here. Instead, | introduce a particular
approach to examining these questions, stepping beyond the for-
mal tools that law professors often use. Applying this methodol-
ogy could ultimately produce a much richer feel for the possibili-
ties and risks in these situations.

t Professor of Law, The University of Chicago. | thank the Sarah Scaife Foundation
and the Lynde & Harry Bradley Foundation for their generous research support; Seth
Chandler, Dick Craswell, Bob Ellickson, Eric Posner, Mark Ramseyer, Matt Spitzer, and
participants at workshops at the American Law and Economics Association Annual
Meeting, Caltech, Chicago, Georgetown, and Stanford for comments; and Cass Sunstein
for enthusiasm and helpful discussion. The title of this article obviously “borrows” from
Richard A. Epstein, Simple Rules for a Complex World (Harvard 1995), and appropriate
apologies (I hope) are hereby made.

A note about reading this paper. The computer simulations presented here are inher-
ently dynamic, and the best way to grasp the dynamics is to see them. The published ver-
sion of this paper includes a color insert that sets out snapshots of these dynamics. A CD-
ROM version of the paper is also available from The University of Chicago Law Review.
Requests should be directed in writing to Dawn M. Matthews, Business Manager, The
University of Chicago Law Review, The University of Chicago Law School, 1111 East
60th Street, Chicago, Illinois 60637 or by phone at 773-702-9593. Finally, the simulations
are also posted at <http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html>.

* See, for example, Symposium: Law, Economics, & Norms, 144 U Pa L Rev 1643
(1996).
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In looking at this traditional question of how and when must
we regulate, | confine the focus of this article. This article exam-
ines norm competition: identifying the circumstances under
which one norm will drive out a second norm or the conditions
that will allow two norms to co-exist in a stable outcome. Put dif-
ferently, this paper investigates the scope of collective action
problems in the adoption of norms. | will generate a wide variety
of outcomes that might result in norm competition; 1 will not,
however, generate the norms themselves. It is possible that we
might create these norms in models of the sort described in this
paper, but I will not do so and will take particular norms as sim-
ply given and wholly outside the formal model. Understanding
where we get competing norms will certainly require painstaking
investigation into particular institutions and situations.”

This paper has three purposes. First, | want to step beyond
simple game-theoretic formulations of norms to examine a larger,
more realistic setting. Simple two-by-two games are a principal
focus of analysis in game theory generally and in game theory
and the law more particularly. This focus is quite understand-
able: these games are tractable and provide a familiar frame-
work. Nonetheless, simplicity is both a vice and a virtue. These
models seem almost naked, stripped of a meaningful strategy
space and shorn of the multiplicity of players that typify real-life
situations. The adoption of a particular norm is quintessentially
a problem of more than small numbers, and we need to move be-
yond freestanding two-by-two games.

Second, | want to use the computer as a laboratory and run
experiments in self-organization. Computer modeling of interac-
tive situations has exploded. There are many labels associated
with this work, including: “complexity,” “artificial life,” “artificial
societies,” “agent-based modeling,” and “massively parallel mi-
croworlds.” The common elements of this work, however, are
straightforward: identify a situation with a substantial number
of actors, specify rules for their actions, and let the system rip to
see what happens. Results emerge, patterns form, and the sys-
tem organizes on its own. Central to this work is the idea of self-
organization, but this concept is hardly new. Friedrich von

”

> See, for example, Lisa Bernstein, Merchant Law in a Merchant Court: Rethinking
the Code’s Search for Immanent Business Norms, 144 U Pa L Rev 1765, 1768 (1996)
(studying merchant practice and challenging the idea that courts should seek to discover
and apply “immanent business norms”); J. Mark Ramseyer, Products Liability Through
Private Ordering: Notes on a Japanese Experiment, 144 U Pa L Rev 1823 (1996) (studying
the decision of many Japanese firms to subject themselves voluntarily to strict products
liability at a time when Japan did not mandate it).
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Hayek emphasized self-organization,” and Adam Smith’s invisi-
ble hand is its defining metaphor. Moreover, scholars have al-
ready used computers to test notions about basic social phenom-
ena. Robert Axelrod’s classic, The Evolution of Cooperation,” did
exactly that more than a decade ago. Nonetheless, recent
changes in computer modeling techniques make it possible to test
in silico, as the phrase goes, the circumstances under which a so-
ciety will evolve on its own to a desired social outcome. These
tests in societal self-organization are essential first steps before
we can understand the possible domain for laws.

Finally, 1 try to contextualize my game theoretic results.
Game theory—on its own and as applied to law—has generated
little more than “possibility” results. A given model will show
that a particular outcome is possible in the context of a coherent
rational framework, but will not reveal the empirical importance
of the phenomenon. A given result may be quite brittle, obtain-
able only if the key parameters are tuned just so, but lost if the
values do not line up precisely. To understand whether the pos-
sibility result matters, we need to understand the full range of
the relevant parameter space. The computer models described
here allow us to test a wide range of possibilities directly and in
so doing judge how robust our outcomes are.

My computer models lead to several conclusions. Under a
broad set of assumptions, my model societies exhibit strong self-
organization in the presence of shared values about norms. When
norms are competing—when two norms are in play simultane-
ously—the individuals in the society successfully coalesce around
the Pareto-superior norm. This is not to say that the good norm
is invariably entrenched or that we cannot influence whether the
good equilibrium is obtained. The set of starting conditions that
leads to the superior norm—the basin of attraction for that
norm—depends on the scope of connectedness among neighbors,
the amount of information available to neighbors when making
decisions, and the rules they use to assess that information. Each
of these is a possible instrument for action as the government
seeks to funnel a larger chunk of the possible initial conditions
into the desired outcome. Think of each outcome as being associ-

* Hayek identified the concept of spontaneous order with the market and with com-
mon law. See, for example, F.A. Hayek, Studies in Philosophy, Politics and Economics 96-
105 (Chicago 1967). Hayek traced the belief in control planning to Cartesian rationalism,
in reaction to which Adam Smith and other British philosophers of the eighteenth cen-
tury “provided a comprehensive theory of the spontaneous order of the market.” Id at 98-
99. See also A.l. Ogus, Law and Spontaneous Order: Hayek's Contribution to Legal The-
ory, 16 J L & Soc 393 (1989).

* Robert Axelrod, The Evolution of Cooperation (Basic 1984).
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ated with a funnel. Making the mouth of the funnel for the good
equilibrium relatively larger—expanding its basin of attraction—
then emerges as an important way for the government to imple-
ment policy.

Furthermore, the results suggest that we should be less san-
guine about sequential norm competition, as occurs when a new
norm competes with an old, entrenched norm. The old norm will
likely continue to survive, notwithstanding that its useful life has
expired.” The seeding of norm clusters might jump-start the
transition from old to new, causing a “norm cascade.”™ In this
scenario, the government—or, for that matter, charities, for-
profit organizations, or you and I—would encourage experimen-
tation; and, if the conditions were right, the seeded norms would
take root and spread, and society would successfully move from
the old norm to the new norm. If the old norm really should sur-
vive, the experiment fails, and society loses very little.

Thus, to some extent, the collective action problem faced in
norms and social meaning analysis has been overstated. | no
longer lose sleep over this problem when we have simultaneous
competition between two competing norms. Of course, in many
social settings, the choice of norms may not be a binary on/off or
yes/no choice. For example, in some tort and commercial settings,
more than two norms may compete simultaneously, but my mod-
els will say nothing about this situation.” And competition over
time still remains a genuine problem, although to understand
this problem, we need first to understand the circumstances that
drive experimentation with new norms.

This article has five sections. Section | sets out the basic
problem of norm competition and norm adoption and discusses
the prior related literature. Section Il lays out the basic frame-

> Compare the problem of “excess inertia” in the network externalities literature. See
Douglas G. Baird, Robert H. Gertner, and Randal C. Picker, Game Theory and the Law
209-11 (Harvard 1994) (illustrating excess inertia in the context of network externalities).
See also Michael Klausner, Corporations, Corporate Law, and Networks of Contracts, 81
Va L Rev 757, 763-64 (1995) (arguing that because the value of a corporate contract term
is related to the number of firms that adopt it, decentralized individual decisionmaking in
the market may fail to produce a socially optimal equilibrium).

® Cass R. Sunstein, Social Norms and Social Roles, 96 Colum L Rev 903, 909 (1996)
(explaining that norm cascades occur when there are rapid shifts in norms, perhaps as a
result of fragile social conditions). Compare Sushil Bikhchandani, David Hirshleifer, and
lvo Welch, A Theory of Fads, Fashion, Custom, and Cultural Change as Informational
Cascades, 100 J Pol Econ 992, 994 (1992) (presenting a model and examples of individuals
rapidly converging on one action despite imperfect information).

" For an argument based on cultural evolution that suggests that commercial norms
will not likely be optimal, see Jody S. Kraus, Legal Design and the Evolution of Commer-
cial Norms, 26 J Legal Stud 337 (1997).
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work of the analysis. Section 111 discusses the simulation results.
Section 1V ties these results to approaches that the law might
take vis-a-vis norms. Section V concludes the paper, discusses its
key limitations, and suggests directions for future work.

I. ORIENTATION: THE PROBLEM AND THE LITERATURE

The idea of norms is sufficiently well understood that | will
introduce it only briefly before moving to consider the relevant
literature. Consider three situations:

* You go to lunch with a business associate. It is Friday and
the end of a long week. The waiter approaches your table
and asks whether you would like to order a drink. You hesi-
tate. You would like a drink, but at the same time you do not
want your lunch partner to think ill of you for having a
drink. Of course, she may be hoping that you will order a
drink so that she can order one as well. What do you do?
What does she do?

e During a speech you want to mention the substantial role
played in your business by members of a particular racial
group. Do you refer to these employees as “African-
Americans”? “Blacks”? “People of Color”? You know of course
that past terms for this racial group are no longer accept-
able, notwithstanding continued use by organizations such
as the NAACP and the United Negro College Fund. You do
not want to be seen as following what might be seen as the
new political orthodoxy, but at the same time you also do not
want to offend these valued employees. What do you do?

 You are negotiating the terms of your employment with a
new employer. You care about the parental leave policy, as
you hope to have children soon. You are nonetheless reluc-
tant to ask about this policy, because you fear that your new
employer may doubt your commitment to the new job. What
do you do?

These are situations in which the background context—whether
described as a norm, a social meaning, or a social role—matters
in an important way. The lunch presents a situation where nei-
ther person wants to move first. Other cases similar to this in-
clude asking first for a prenuptial agreement, which could be
seen as a sign of doubts about the marriage, and moving to color-
blind hiring unilaterally in a community dominated by discrimi-
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natory norms.? A social norm may exist that will resolve these
situations in ways that benefit all interested parties. These
norms could easily change over time or be subject to geographical
or class variation.’

The second situation is more complex. It demonstrates
clearly that norms can evolve and presents a clear example of a
“norm entrepreneur.”® Who used the term “African-American”
before Jesse Jackson embraced it? Once Jackson did so, the norm
shifted away from “Black,” and this created a complex range of
possible social meanings reflected in the use of the phrase “Afri-
can-American.” Initial use of the term could be seen as embrac-
ing Jesse Jackson personally or perhaps the broad set of social
goals that he favored.

The third situation might be seen as just a problem in sig-
naling theory," but can also be understood as an issue embedded
in a web of social roles and social norms. Mothers are expected to
be quite involved with their children, fathers in the 90s increas-
ingly so, and thus how one answers the question almost certainly
depends on gender. Norms matter as well: if everyone routinely
asks this question, it loses its signaling punch.

The issues raised by norms have generated a substantial lit-
erature. This literature establishes the context in which 1 will
create my computer simulations. Accordingly, the following sec-
tions review the literature concerning norms and game theory;
social norms, social meanings, and collective action problems;
custom; social learning and social computation; agent-based
computer simulations; and, finally, evolutionary and spatial
games.

® Eric A. Posner, Law, Economics, and Inefficient Norms, 144 U Pa L Rev 1697, 1730
(1996).

° Indeed, the daily arbiter of American business life claims that the norm has shifted
recently in favor of drinks at lunch, so enjoy. See Stephanie N. Mehta, Lunch Hour Is Be-
coming Happy Hour Again, Wall St J B1 (Sept 23, 1996).

1 See Sunstein, 96 Colum L Rev at 909 (cited in note 6) (defining “norm entrepre-
neurs” as people interested in changing social norms).

* See Philippe Aghion and Benjamin Hermalin, Legal Restrictions on Private Con-
tracts Can Increase Efficiency, 6 J L Econ & Org 381 (1990) (arguing that restrictions on
contracts that correct distortions when one party signals information to another can be
valuable). See also Baird, Gertner, and Picker, Game Theory and the Law at 143 (cited in
note 5) (suggesting that a law requiring employers to offer parental leave could solve the
problem of potential employees not bargaining for parental leave because of the other in-
ferences that the employer might draw about them before hiring them. In this case, the
mandatory law could lead to a more efficient result by prohibiting signaling).
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A. Norms and Game Theory

Simple two-by-two games provide much of the formal appa-
ratus at work in the norm theory literature. For example, Sug-
den’s masterful book The Economics of Rights, Co-operation and
Welfare'” establishes the two-by-two game as his central tool in
studying the evolution of conventions and the rise of spontaneous
order. Ellickson also sustains much of his theoretical analysis of
norms in the two-by-two framework.” As he makes clear up
front, he views his inquiry into norms as seeking “to integrate
three valuable—but overly narrow—uvisions of the social world:
those of law and economics, sociology, and game theory.™ A sur-
vey of recent articles also reveals that the tools of game theory—
and, in particular, free-standing two-by-two games—remain the
formal vehicle of choice for understanding norms.™

B. Social Norms, Social Meanings, and Collective Action
Problems

Recent theoretical work on social norms and social meaning
advocates a substantial role for government in cultivating appro-
priate norms. Much of this analysis is rooted in the collective ac-
tion problem faced by individuals in the adoption of a particular
norm or social meaning.

For example, Cass Sunstein has recently mounted a vigorous
defense of “norm management” by the government.'® He focuses
on the context in which individuals make choices and identifies
the important, if not pervasive, role that social norms play in de-

? Robert Sugden, The Economics of Rights, Co-operation and Welfare vii (Basil
Blackwell 1986) (The book’s object is “to show that if individuals pursue their own inter-
ests in a state of anarchy, order—in the form of conventions of behavior that it is in each
individual's interest to follow—can arise spontaneously.”).

* Robert C. Ellickson, Order without Law 156-66 (Harvard 1991). Indeed, Ellickson
devotes Chapter 9 of Order without Law entirely to game theory.

“1d at 1.

** See, for example, Robert D. Cooter, Decentralized Law for a Complex Economy: The
Structural Approach to Adjudicating the New Law Merchant, 144 U Pa L Rev 1643, 1657-
77 (1996) (explaining how social norms arise and persist without state intervention); Pos-
ner, 144 U Pa L Rev at 1713-19 (cited in note 8) (examining the mechanisms by which
preferences for various rules are transformed into a rule that governs behavior); Jason
Scott Johnston, The Statute of Frauds and Business Norms: A Testable Game-Theoretic
Model, 144 U Pa L Rev 1859, 1859 (1996) (analyzing the relationship between Article 2 of
the Uniform Commercial Code and business norms). Compare Rajiv Sethi, Evolutionary
stability and social norms, 29 J Econ Behav & Org 113 (1996) (examining the emergence
of stable patterns of behavior that correspond to observed social norms such as vengeance
and cooperation); Peter H. Huang and Ho-Mou Wu, More Order without More Law: A
Theory of Social Norms and Organizational Cultures, 10 J L Econ & Org 390, 391 (1994)
(modeling formally the control of corruption in principal-supervisor-agent relationships).

* Sunstein, 96 Colum L Rev at 907 (cited in note 6).
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fining choices. These norms will change the cost of a possible
choice and thus will exert a substantial influence over observed
choices.” For example, Sunstein notes that social norms regard-
ing smoking have changed over time.” Behavior that once may
have been admired is now seen as a sign of weakness and is a
source of stigmatization. The social price of smoking has risen
over time, and, like the direct cost of buying cigarettes or the
health costs of cigarettes, should reduce the amount of smoking.*’

Given the important way in which social norms influence the
costs and benefits of particular choices, we need to understand
how norms arise. Sunstein notes that individuals typically have
little control over the content of a particular norm and almost no
ability to push society from one norm to another.”® This individ-
ual impotence raises the specter of a collective action problem
where society cannot coalesce around a beneficial norm.”* Given
this collective failure, direct government cultivation of particular
norms—“norm management” in Sunstein’'s phrase*—appears to
be a plausible response.

Larry Lessig also has emphasized the collective action prob-
lem in his defense of social meaning regulation.” Again, social
meanings are purely contextual. An action that might give of-
fense in a cab in Hungary—putting on a seat belt, to pursue one
of Lessig's examples*—might go completely unnoticed in France.
An individual is essentially powerless to alter the prevailing
meaning associated with a particular act. She may take steps to
mute that meaning, but her act has already spoken for her. In
this framework, it is certainly imaginable that society will get
stuck on a destructive convention.”

C. Custom

Scholars also examine the same issues under the guise of
custom, often in the context of evaluating reasonable behavior in

¥ 1d at 939-40.

® 1d at 905-06, 940.

* 1d at 950-51.

* I1d at 911.

' 1d. See also the related discussion of coordination problems as a justification for le-
gal intervention in Cass R. Sunstein, After the Rights Revolution 49-52 (Harvard 1990).

* Sunstein, 96 Colum L Rev at 913 (cited in note 6).

* See Lawrence Lessig, The Regulation of Social Meaning, 62 U Chi L Rev 943, 991-
1016 (1995). See also Lawrence Lessig, Social Meaning and Social Norms, 144 U Pa L
Rev 2181, 2189 (1996) (asserting that norm analysis supplements traditional economics
and should focus not just on describing behavior but also on the social meaning of norms).

* Lessig, 62 U Chi L Rev at 998.

» See also Dan M. Kahan, Social Influence, Social Meaning and Deterrence, 83 Va L
Rev 349 (1997).
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both commercial®® and tort” settings. We used to say “customs”
when we were talking about norms; now the norm, of course, is
to say “norm.” Bad jokes aside, we might distinguish customs
and norms based on the roles assigned by the legal system. Cus-
toms might be used to describe practices that have legal signifi-
cance. They might be seen as norms that have been incorporated
by reference into the law, statutory or otherwise. If so, then
norms are assigned a role by the legal system only by negative
inference. For example, Section 547(c)(2) of the Bankruptcy Code
embraces a triple-ordinariness standard to insulate some pre-
bankruptcy payments from avoidance as preferences. The stan-
dard looks to the practices between the parties but also to “ordi-
nary business terms.” Embracing custom or current trade prac-
tices means, of course, that a court needs to figure out what those
practices are, and that endeavor can be quite difficult.® In any
event, nothing that | do in this paper distinguishes customs from
norms.”

D. Social Learning and Social Computation

This work examines the circumstances under which widely
held information will be aggregated efficiently so that the right
social outcome is reached. For example, imagine a new technol-
ogy of uncertain quality. Individuals receive information about
the technology through its use, but they receive a noisy signal.
Aggregating these separate signals into an integrated framework
is the work of social learning or social computation.®

* See generally Bernstein, 144 U Pa L Rev 1765 (cited in note 2); Richard Craswell,
Do Trade Customs Exist?, in Jody Kraus and Steven Walt, eds, The Jurisprudential
Foundations of Corporate and Commercial Law (forthcoming Cambridge 1998); Kraus, 26
J Legal Stud 337 (cited in note 7).

* See generally Richard A. Epstein, The Path to The T.J. Hooper: The Theory and
History of Custom in the Law of Tort, 21 J Legal Stud 1 (1992).

* See Craswell, Trade Customs at 2 (cited in note 26) (arguing that custom is based
more on individual case-by-case judgments than bright-line rules). See also In the Matter
of Tolona Pizza Products Corp, 3 F3d 1029, 1033 (7th Cir 1993) (holding that “ordinary
business terms” refers to practices in which similarly situated firms engage).

* A third and overlapping literature addresses conventions. For an introduction, see
H. Peyton Young, The Economics of Convention, 10 J Econ Perspectives 105 (Spring
1996).

¥ See generally Glenn Ellison and Drew Fudenberg, Rules of Thumb for Social Learn-
ing, 101 J Pol Econ 612 (1993) (examining learning environment models where players
consider the experience of their neighbors in deciding which technology to use); Glenn
Ellison and Drew Fudenberg, Word-of-Mouth Communication and Social Learning, 110 Q
J Econ 93, 93-97 (1995) (studying the way that word-of-mouth communication aggregates
the information of individual agents and may lead to the socially efficient outcome). For
work from the perspective of cultural evolution, see Kraus, 26 J Legal Stud 337 (cited in
note 7).
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E. Agent-Based Computer Simulations

The study of the social patterns that arise when individuals
interact using simple decision rules dates back at least as far as
Thomas Schelling’s classic work, Micromotives and Macrobehav-
ior.*® In his characteristically low-tech fashion using only a
checkerboard and dimes and pennies, Schelling showed how even
relatively mild associational preferences could give rise to sub-
stantial segregation.* The coins were randomly placed on the
squares of the checkerboard. They then were given simple pref-
erences and rules for moving around the checkerboard. For ex-
ample, each coin wanted at least one-third of its neighbors to be
like it. If they were not, it would move to the nearest empty
square that met its demands.** Schelling demonstrated that seg-
regation could emerge quite naturally even if none of the partici-
pants had an affirmative taste for discrimination.*

An emerging literature reports on the uses of computers to
study self-organization in social systems. These developments
spill over from the complexity and artificial life research in biol-
ogy and the physical sciences, which maintains a similar empha-
sis on computer simulations of complex adaptive systems.*
Mitchell Resnick’s Turtles, Termites, and Traffic Jams®* is a
wonderful introduction to the possibilities in these large, decen-
tralized models. But Resnick’s focus is on epistemology, rather
than on the detailed study of particular social phenomena.
Joshua Epstein’s and Robert Axtell's Growing Artificial Socie-
ties® represents the most sustained treatment to date in the so-
cial sciences. It describes the Sugarscape, an artificial society
constructed with more than twenty thousand lines of computer

* Thomas C. Schelling, Micromotives and Macrobehavior (Norton 1978).

® 1d at 147-55.

* 1d at 148.

¥ Id at 153-54. For recent applications of this work, see generally Joshua M. Epstein
and Robert Axtell, Growing Artificial Societies 165-71 (Brookings/MIT 1996); Paul Krug-
man, The Self-Organizing Economy 15-22 (Blackwell 1996); Mitchell Resnick, Turtles,
Termites, and Traffic Jams 81-88 (MIT 1994).

* For representative work, see generally Stuart Kauffman, At Home in the Universe:
The Search for Laws of Self-Organization and Complexity vii (Oxford 1995) (arguing that
self-organization is the root source of order in the natural world); John H. Holland, Hid-
den Order: How Adaptation Builds Complexity xviii-xix (Addison-Wesley 1995) (providing
an overview of “complex adaptive systems”); Per Bak, How Nature Works xi (Springer-
Verlag 1996) (viewing nature as “self-organized criticality”—perpetually out of balance,
but organized in a poised state, the critical state, where anything can happen within well
defined statistical laws).

® Resnick, Turtles (cited in note 34).

¥ Epstein and Axtell, Artificial Societies (cited in note 34).
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code.* Behavior in the Sugarscape mimics several key elements
of behavior in society: agents are born, accumulate wealth, trade,
reproduce, and die. The book offers a vision of social science as
seeking to replicate—or to generate—particular macro patterns
from well defined initial microspecifications.* This vision gives
rise to a generative approach—hence the use of the term in the
title of this article—to modeling.”° The move from micro to macro
itself is not new; leading macroeconomics theorists have spent
the last two decades building rigorous micro foundations for mac-
roeconomic phenomena.”* The use of explicit computer simula-
tions with detailed specifications of decision rules as the means
to fine-tune these micro-generated macro principles is, however,
innovative.*

Growing Artificial Societies provides a leading example of
the possibilities of agent-based computer models, but also makes
apparent the weaknesses of the best models to date. The book is
bereft of institutional features: notwithstanding the desire to
grow everything “from the bottom up,” the authors fail to gener-
ate the norms, contracts, laws, and organizations that constitute
the basic institutional framework. Of course, the same criticism
applies to this article: 1 model norm competition, but not the
creation of the competing norms themselves. As noted above, |
believe that modeling the creation of these institutions (or the
norms) is at least an order of magnitude more complex than the
problem tackled here.”

F. Evolutionary and Spatial Games

Game theory is built up from a handful of key concepts. Per-
haps most important is the notion of a Nash equilibrium. A Nash

* 1d at 181.

* Id at 1.

“1d at 4.

“ See, for example, Robert E. Lucas, Jr., Expectations and the Neutrality of Money, 4
J Econ Theory 103, 121-22 (1972) (modeling why real output might sputter with mone-
tary disturbances); Thomas J. Sargent, Dynamic Macroeconomic Theory 1 (Harvard 1987)
(describing general equilibrium models that have been built to help interpret time series
observations of economic aggregates).

* Though even here macro theorists have worked with automatons—agents acting
under bounded rationality—to investigate macro phenomena. See, for example, Thomas
J. Sargent, Bounded Rationality in Macroeconomics (Oxford 1993).

* See text accompanying note 2. For additional discussion of Sugarscape and for a
general introduction to agent-based simulations, see John L. Casti, Would-Be Worlds 170-
79 (Wiley 1997). And, for a recent effort to apply models of self-organization to economic
phenomena, see Krugman, The Self-Organizing Economy at vi (cited in note 34) (showing,
for example, how the principle of “order from instability,” which explains the growth of
hurricanes and embryos, can also explain the formation of cities and business cycles).
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equilibrium is a set of self-consistent strategy choices, in the
sense that each player prefers no other strategy in response to
the strategy of the other players. So, for example, in a two-player
simultaneous-move game where each player has two choices, say,
left or right, (left, left) forms a Nash equilibrium if player 1
would have no reason to deviate from left if player 2 were to play
left, and the same holds for player 2 were player 1 to play left.
Put this way, | hope to highlight a key problem with the Nash
idea: it is far from obvious how the players actually effectuate a
Nash equilibrium. It is one thing to say that player 1 would play
left if she knew that player 2 would play left and that player 2
would play left if he knew that player 1 would play left; it is
something else to say how the players choose when they do not
know what the other player will do. Much of the recent work in
game theory has examined the circumstances under which play
by boundedly rational players using simple decision rules con-
verges on Nash equilibria.* This is conventionally labeled as
work in evolutionary game theory, notwithstanding the use of
that phrase to describe an earlier, somewhat related literature
typically associated with the work of John Maynard Smith.* The
areas of overlap between this work and the current paper will be
noted throughout the paper.

In addition to this literature, Luca Anderlini and Antonella
lanni use cellular automata to explore success in a pure coordi-
nation game, where the players are indifferent to two possible
equilibria.”® They use these models to examine the relationships
between absorbing states—fixed equilibrium points given the de-
cision rules used in the model—which may or may not be strate-
gically optimal—and Nash equilibria, which are in some sense
strategically optimal.*” Finally, the scholarship that most clearly

“ See George J. Mailath, Economics and Evolutionary Game Theory (manuscript on
file with U Chi L Rev); Drew Fudenberg and David K. Levine, Theory of Learning in
Games (manuscript on file with U Chi L Rev); Michihiro Kandori, George J. Mailath, and
Rafael Rob, Learning, Mutation, and Long Run Equilibria in Games, 61 Econometrica 29
(1993); Glenn Ellison, Learning, Local Interaction, and Coordination, 61 Econometrica
1047 (1993); Siegfried K. Berninghaus and Ulrich Schwalbe, Evolution, Interaction, and
Nash Equilibria, 29 J Econ Behav & Org 57 (1996).

* John Maynard Smith, Evolution and the Theory of Games (Cambridge 1982).

* Luca Anderlini and Antonella lanni, Path Dependence and Learning from Neigh-
bors, 13 Games & Econ Behav 141, 142 (1996) (studying evolutionary learning in a locally
interactive system). See also Luca Anderlini and Antonella lanni, Learning on a Torus
(forthcoming Cambridge) (investigating the behavior of locally interactive learning sys-
tems for a finite population playing a coordination game).

“ Anderlini and lanni, 13 Games & Econ Behav at 142. See also Lawrence E. Blume,
The Statistical Mechanics of Strategic Interaction, 5 Games & Econ Behav 387, 389 (1993)
(presenting dynamic models of strategic interaction in a population of players whose di-
rect interaction is local but indirect interaction is global).
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parallels the approach taken here uses a spatial version of the
prisoner’s dilemma model to look at questions in evolution and
biology.” I discuss this literature in Section Il below.

Il. THE BASIC SETUP

A. Physical Setup

The two-by-two interactions considered in this article will
have the following form:

Player 2
Player 1 Left Right
Left a,a c,b
Right b,c d,d

Payoffs: (Player 1, Player 2)

These are symmetric games, meaning that exchanging player 1
for player 2 (or vice versa) changes nothing. In that sense, only
one type of player plays these games. This strategy space is a
natural starting point, but also excludes some well-known games,
including the Battle of the Sexes.”

I will embed this game in a spatial framework, and to do so,
I will lay out an nxn grid.*® Focusing on just one block of nine
players in a 10x10 version of this framework, we would have the
following:

*® See generally Martin A. Nowak and Robert M. May, Evolutionary games and spa-
tial chaos, 359 Nature 826 (1992) (studying model in which players have no memory and
either always defect or always cooperate); Martin A. Nowak and Robert M. May, The Spa-
tial Dilemmas of Evolution, 3 Intl J Bifurcation & Chaos 35 (1993) (similar extension of
evolutionary game theory to include spatial dimensions); Martin A. Nowak, Robert M.
May, and Karl Sigmund, The Arithmetics of Mutual Help, Scientific American 76 (June
1995) (examining various cooperative strategies and reciprocal help in the biological
world); Martin A. Nowak, Sebastian Bonhoeffer, and Robert M. May, More Spatial
Games, 4 Intl J Bifurcation & Chaos 33 (1994) (extending earlier work).

* See Baird, Gertner, and Picker, Game Theory and the Law at 41-42 (cited in note
5). In the traditional “Battle of the Sexes,” there is a conflict between two people who
want to spend the evening together but have different preferences about whether to go to
a fight or to the opera. Both would rather go together to their less preferred event than go
alone to their preferred event. Neither is able to communicate with the other, however, so
each must guess what the other will do. This game exemplifies coordination games where
there are multiple Nash equilibria and conflicts over the equilibria. Both players want to
coordinate their actions, but each player wants a different outcome. Id at 302.

* For an introduction to the issues raised by embedded games, see id at 191-95.
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Diagram 1

Player X interacts with her immediate eight neighbors. She
plays the free-standing two-by-two game with each neighbor, but
she plays only one strategy per round. In other words, she will
play either left or right, and that strategy will be the single play
for each of the eight interactions. Player X's payoff is determined
from the payoff function defined by the two-by-two game, given
the plays of her neighbors.

For example, if our player played right, while all eight of her
neighbors played left, she would receive a payoff of 8b. If seven
played left, while one played right, she would get a payoff of 7b +
d. This model is a natural extension of the two-by-two game to a
somewhat more general framework. Note also that there are no
boundaries here, notwithstanding the picture. Players at the top
are treated as neighbors of the players at the bottom, at the left
edge with those on the right edge. (Put differently, the layout is a
doughnut, or a torus.) In the actual runs of the model, the grid is
101x101, giving a total of 10,201 cells (and 10,201 players).

1. Payoff neighborhood.

I will discuss two kinds of neighborhoods in this article: pay-
off neighborhoods and information neighborhoods. A payoff
neighborhood is the local area that directly impacts one player’s
payoffs. Once a player’s strategy is chosen, the strategy choices
made by the other players in the payoff neighborhood will deter-
mine the original player’s payoffs and thus these strategies de-
fine the neighborhood’s impact. In a basic two-by-two game, the
payoff neighborhood for one player is simply the other player. In
the game set forth in Diagram 1, the payoff neighborhood is
player X’s eight neighbors.

While the notion of a payoff neighborhood is quite abstract,
it would be a mistake to think that it does not track something
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guite real. The payoff neighborhood is akin to a measure of com-
munity connectedness, or how linked we are to our neighbors. Of
course, linkage could operate over many dimensions: linkage
could be a sense of how much | care about my neighbor’s welfare,
or it could be much more instrumental, in the sense that your de-
cisions help create the environment in which | operate. My payoff
neighborhoods, however, are purely instrumental: my neighbor’s
strategy decisions set the environment, which, when coupled
with my decision, create the consequences that flow to all of us.

Any number of payoff neighborhoods are possible, but I will
work with the two standard neighborhoods from the cellular
automata literature:

Von Neumann Moore

Diagram 2

The grouping on the left is the Von Neumann neighborhood,
the grouping on the right is the Moore neighborhood. Focus on
the cell at the center of each neighborhood. In the Von Neumann
version, the payoff of each player is determined by her strategy
choice and the choices of her neighbors to the immediate East,
West, North, and South. The Moore neighborhood starts with the
Von Neumann neighborhood and adds the four diagonal cells.
The payoff of the center player is given by her decision and the
decision of her eight neighbors. (Diagram 1 above thus repre-
sents a Moore neighborhood.) Of course, each player will be
treated as centered at a payoff neighborhood, so the mosaic cre-
ated is one of overlapping payoff neighborhoods.”

2. Information neighborhood.

An information neighborhood is the area in which a player
observes results. One might think of it as the “vision” of the
player. This information will form the basis for the player’s
strategy choice in the next round of the model. In many cases,
the payoff neighborhood and the information neighborhood will

* For a general introduction to the Von Neumann and Moore neighborhoods, see
Richard J. Gaylord and Kazume Nishidate, Modeling Nature 4-7 (Springer-Verlag 1996).
Also note, as Bob Ellickson did in a letter to me, that each individual in this model has a
unique reference group, as the overlap is imperfect. These social groups are therefore dif-
ferent from kinship or professional groups where each person has the same “neighbors.”
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be identical. But, as a general matter, it would be a mistake to
assume that these neighborhoods need be coextensive. Informa-
tion has a natural flow to it. Information also is a natural in-
strument for changing results in the models. Creating an ethic of
welfare connectedness—what many would label a sense of com-
munity—is certainly extraordinarily difficult. Even creating in-
strumental connectedness is probably difficult, given the ability
of individuals to isolate themselves from the consequences of the
decisions of others. In contrast, information connectedness is
much easier: it is relatively straightforward to provide informa-
tion about others (though getting the recipients to listen is an-
other hurdle).

To examine this divergence between payoff and information
neighborhoods, | will vary the information neighborhoods. I will
begin by looking at the coextensive cases and then move to cases
in which the information neighborhood is larger than the payoff
neighborhood. I will first embed a Von Neumann payoff neigh-
borhood in a Moore information neighborhood. The player at the
center will still have her payoffs determined by the choices made
by her North, South, East, and West neighbors, but when she
chooses her strategy for the next round, she will have seen the
outcome of the prior round for her eight Moore neighbors. Next, |
will embed the Moore neighborhood in a double Moore neighbor-
hood, letting the player at the center see out a distance of two
cells in all directions instead of just one cell. Finally, 1 will look
at one version of a global information neighborhood, where play-
ers see all of the outcomes. Lest this be thought silly, information
sources such as newspapers and stock markets may play exactly
this kind of aggregation role.

B. Strategy Choice

Next, we need to specify some rules regarding strategies. In
most of the models, initial strategies will be assigned at random.
I will vary the distribution of initial left and right players and
test how these initial conditions influence outcomes. As is con-
ventional in this literature, | will use a color-coding scheme to
track strategy changes between rounds. This scheme will be used
in the color insert associated with this article and the website
where videos of simulations are available.” Other than in the ini-
tial round, a cell will be coded as blue if the player occupying it
has played left in two consecutive rounds and will be coded as

*” The website is at <http://www.law.uchicago.edu/Picker/aworkingpapers/norms.
htmi>.


http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
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red if the player has played right in these same rounds. A player
who switches from left to right is coded as yellow, and one who
makes the reverse switch—from right to left—is coded as green.
(In the initial random distribution, any cell playing left is coded
as blue, playing right as red.) To review the color-coding for the
strategy choices per round:

COLOR STRATEGY

Blue Two Rounds of Left

Red Two Rounds of Right
Yellow Switch from Left to Right
Green Switch from Right to Left

Turn next to the substantive question of how we define
strategy choice, which determines how the model will evolve from
round to round, generation by generation. Contrast three frame-
works for looking at decisionmaking and knowledge:

*  The Full Information/Full Rationality Model: Players know
the strategy space of the game, know the function giving rise
to the payoffs, and have the ability to assess optimal strat-
egy. This model tracks the usual assumption that the play-
ers have full knowledge of the rules of the game that they
are playing and the ability to use that information in the
best possible way.

e The Biological Model: Two types of players exist, one can
only cooperate, one can only defect (that is, one plays left
only, one plays right only). Thus, these “players” make no
decisions at all; nature and instinct have programmed their
“decisions.” The situation evolves by tying reproductive suc-
cess in the next generation to payoffs in the current genera-
tion. A given cell is occupied in the next round by a player of
the type that received the highest payoff among the nine
cells centered on the cell in question. This model is a natural
interpretation of the Darwinian model of adaptive success
generating reproductive success.

e The Limited Information/Incomplete Rationality Model:
Players lack full information regarding the strategy space or
the way strategies interact to give rise to payoffs. For exam-
ple, they might know that they are playing a two-by-two
game, but they do not know which one. They may learn this
information through the play of the game, though the ap-
proach to learning needs to be specified. Incomplete ration-
ality may mean that the players’ abilities are bounded or
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that rationality analysis is insufficient to guide behavior.
Some heuristic rule is required for decisions, but this rule is
not generated internally from the rationality assumptions.
Examples might include selecting the strategy that does best
among those observed by a player or playing a spatial ver-
sion of tit-for-tat.”

It is important to understand where these approaches con-
verge and diverge. Consider a spatial version of the prisoner’s
dilemma. Given its overall prominence, | would be remiss in not
addressing the prisoner’s dilemma, though for reasons that will
become clear, | think the spatial prisoner’s dilemma is a dead-
end for the law and economics crowd. Start with a free-standing
version of the game that fits the general scheme described above:

Player 2
Player 1 Left Right
Left a,a c,b
Right b,c d,d

Payoffs: (Player 1, Player 2)

Assume that b > 1. If we analyze this game, we should expect
both players to play right. If player 1 expected player 2 to play
right, player 1 would be indifferent between playing left or right
because her payoffs are the same (0) under either strategy. But if
player 1 expected player 2 to play left, she would clearly play
right, as b > 1. This reasoning holds for both players, so we
should expect (right, right) with a payoff of (0,0). Obviously, the
players would both be better off with (left, left), as they each
would receive a payoff of 1. This result replicates the essential
feature of the prisoner’s dilemma.

1. Full information/full rationality model.

Now look at the same prisoner’s dilemma in the spatial con-
text in each of our three frameworks. Start with the full informa-
tion/full rationality model. Players know exactly what game they
are playing and assess strategies in an individually rational way.
As in the free-standing prisoner’s dilemma, all players should de-
fect. To see this result, walk through the possibilities one-by-one

* See Baird, Gertner, and Picker, Game Theory and the Law at 171-72 (cited in note
5). “Tit-for-Tat” is the strategy in a repeated game in which a player cooperates in the
first period and, in all subsequent periods, defects if the other player defected in the im-
mediately preceding period, but otherwise cooperates. Id at 316.
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and assume again that b > 1. First, what should you do if you
know that all eight of your neighbors are going to cooperate? If
you cooperate you receive a payoff of 8, but if you defect you re-
ceive a payoff of 8b, so clearly you should defect. Next, suppose
that seven neighbors were going to cooperate and one was going
to defect. You get 7 from cooperating, but 7b from defecting, so
you defect. Now, approach the other extreme. Suppose that seven
of your neighbors were going to defect and one intended to coop-
erate. You will get nothing from your defecting neighbors, re-
gardless of whether you cooperate or defect, but you will get 1
from your cooperating neighbor if you cooperate and b from him
if you defect. So you defect. Finally, suppose that all eight of your
neighbors were going to defect. You would get 0 from cooperat-
ing, and 0 from defecting, so you are indifferent. Taking all of
this analysis together, you never do worse by defecting and often
do better, so you will defect. Everyone defects, just as in the free-
standing model.

The spatial feature adds nothing in the full information/full
rationality setting. The analysis does show that the central fail-
ure of the free-standing prisoner’'s dilemma—individually ra-
tional behavior is collectively foolish—carries over to the spatial
setting, but we should have guessed that anyhow. So switch
frameworks, and consider how the spatial version of the pris-
oner’'s dilemma fares if we use a biological model instead.

2. Biological model.

In the biological model, the spatial prisoner’'s dilemma is lit-
tle more than a payoff function for the two strategies of coopera-
tion and defection. Recall that no decisions are made in the bio-
logical model: actors simply have a preordained type. There is no
obvious reason to think that this model will evolve in any par-
ticular way, and indeed, as Nowak, May, Bonhoeffer, and Sig-
mund show,> a rich variety of behavior emerges. In some cases,
the model converges to the all-defection outcome that we saw in
the full information/full rationality model. In other cases, the
model cycles forever through a handful of states, all of which in-
volve a mix of cooperation and defection. In yet other cases—and
these are arguably the most interesting—the model appears to be
almost chaotic. The model cycles only over a long time period,
and the cycle will be all but undetectable to you or me.>

* See note 48.
* To see an example of this, set b = 1.65, and start with an initial random distribu-
tion of 10 percent defectors and 90 percent cooperators. A movie showing the first hun-
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This result is a dramatic change from the full informa-
tion/full rationality model, which locks into the defection equilib-
rium immediately and is bereft of interesting behavior. In con-
trast, the biological framework provides an embarrassment of
riches. Where does this result put us? Biology is a great subject,
but we want models in which people make decisions and their
behavior is not simply instinctive and preordained. To achieve
this setting, switch to the limited information/limited rationality
framework.

3. Limited information/limited rationality model.

In this framework, players know only that they are playing a
two-by-two game and thus have a choice between two strategies.
We now need to consider learning quite carefully. Suppose that
our players learn nothing, and make decisions based on a simple
observation. In each round, each player observes the payoffs that
she receives and those received by her neighbors and the strate-
gies that the neighbors play. Given this information, she adopts
the strategy that did best—the strategy that resulted in the sin-
gle highest payoff in the nine cells that she sees.

This strategy choice matches the biological framework ex-
actly; indeed, that is the point of this exercise. The absence of
learning means that our player never assesses whether defection
is a dominant strategy. Instead, she uses a more basic decision
rule that tracks exactly the reproductive success rule used in the
biological model. By introducing limited information and limited
rationality, we seem to have made the spatial prisoner’s dilemma
interesting for us.

But this outcome does not hold if we advance the model just
a bit. It does not take much for our players to learn what game
they are playing. A little experimentation and a little variation
coupled with some simple calculations will let our players con-
vert this limited information game to the full information ver-
sion. Suppose, for example, that our test player cooperates in one
round, while six of her neighbors cooperate and two defect. She
will receive a payoff of 6, which she knows to be derived in the
following way:*

6pcc + 2Pcd = 6

Obviously, an infinite number of pairs will satisfy this equa-

tion, including (1,0) and (0,3). She does not yet know much. Sup-

dred generations of this model is available at my website (cited in note 52).
* The symbols pec and pea represent the payoffs in the model when, respectively, both
players cooperate, and player 1 cooperates and player 2 defects.


http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
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pose that in the next round, she again cooperates, while five of

her neighbors cooperate and three defect. She now gets a payoff

of 5, which she again knows to be generated in the following way:
5pcc + 3ped =5

Our player now has two equations with unknowns, and can
solve them to learn that pc.c = 1 and pe« = 0. Given this informa-
tion, she can defect in the next round and learn the value of pdd.”’
She now enjoys full information regarding the game, and can de-
termine that defection is her dominant strategy.

The limited information model therefore tracks the inter-
esting biological model when players do not learn, but quickly
converts into the full information model when players begin to
learn. To give a richer sense of this outcome, I have simulated
the model one hundred times on the assumption that 25 percent
of the players learn the game and defect. Moreover, | assumed
that 25 percent of the remaining players defect initially, while 75
percent of this same group cooperate. After that, this predeter-
mined group chooses the strategy that yields the highest payoff
in the nine cells that they see. Under those parameter settings,
eighty-five out of one hundred games ended in the all-defection
equilibrium. In the other fifteen simulations, cooperation did
poorly.

For me, this analysis yields the following results. We can
generate complex, interesting behavior in the spatial prisoner’s
dilemma, and this behavior may have important implications in
contexts in which individuals do not learn. Nonetheless, rela-
tively simple learning converts the limited information frame-
work to the full information framework, and only a modest frac-
tion of the players need to master this learning for the interest-
ing behavior to vanish. For most circumstances of interest to us,
the spatial prisoner’s dilemma should look a lot like the free-
standing prisoner’s dilemma. That result is worth noting, but it
also means that playing the spatial prisoner’'s dilemma reveals
nothing new.

This discussion has been an extended look down a dead-end.
| started by emphasizing the need to be precise about the ration-
ality and information assumptions used to generate strategies
from generation to generation. The traditional assumptions of
full information and full rationality make the spatial prisoner’s
dilemma an uninteresting vehicle for studying norm problems.
Relatively simple learning converts a limited information/limited

* The symbol pdd, of course, represents payoffs when both players defect.
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rationality approach into the traditional rationality approach. We
should therefore look elsewhere to model norm competition.
I11. How NORM COMPETITION EVOLVES

Turn now to the traditional coordination game. | will focus
on a particularly simple version of it:

Player 2
Player 1 Left Right
Left 11 0,0
Right 0,0 b,b

Payoffs: (Player 1, Player 2)

As is generally known, we have little interesting to say about
this model even when we use our full rationality assumptions.
Dominance arguments will not solve this game. If Player 1 plays
left, Player 2 wants to play left, and vice versa; if Player 1 plays
right, Player 2 wants to play right, and vice versa. Neither player
has a single best strategy to play. In the parlance of game theory,
both (left, left) and (right, right) are Nash equilibria: neither
player wants to switch strategy given the other player’s strategy.
Nonetheless, game theory provides no good way of choosing be-
tween these equilibria. We do not reach a determinate result,
meaning that we cannot explain how the players would actually
make decisions.”® We must therefore use our limited informa-
tion/limited rationality framework. Once we are in this frame-
work, we can weaken our usual information assumptions without
changing results in any material way.

Assume that players know only that they are playing a spa-
tial two-by-two game. They know nothing about the payoffs and
nothing about the strategy space. They are endowed with an ini-
tial strategy at random from all of the available strategies. They
know only one strategy, and they play it. Round by round, play-
ers will observe the strategies played by their neighbors and
thereby learn new strategies. Players will also observe the conse-
guences of those strategies. Some players will learn the full pay-
off function, just as our players in the prior section learned that
they were playing the spatial prisoner’'s dilemma. In this model,

*® This overstates somewhat. Harsanyi and Selten have emphasized the idea of risk
dominance to resolve these games. This idea focuses on the consequences of failing to co-
ordinate and therefore the relative risk associated with each choice. See John C. Har-
sanyi and Reinhard Selten, A General Theory of Equilibrium Selection in Games 82-89
(MIT 1988).
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the same linear learning will be fully informative about the pay-
off functions defined by the particular coordination game being
played. But—and this is the key difference from the spatial pris-
oner’s dilemma—full knowledge of the strategies and the payoffs
will not render this game uninteresting. In the spatial prisoner’s
dilemma, learning converted the limited information framework
into the full rationality framework and distanced us from the
biological model. In contrast, here, because we do not have a de-
terminate way of playing coordination games, we necessarily
must reach outside the model for an operational decision rule.
Learning does not convert the limited information framework
into the full rationality model, and indeed, we remain quite close
to the biological approach.

This discussion lays out the game and its setup. Next, we
need to specify a choice rule for the players. For now, | will as-
sume that each player uses the same rule. In Section I11.D, I will
look at an alternative choice rule, but I will start with the rule
that has received the most study in the literature: In the next
round, the player will adopt the strategy that did the best, as
measured by how her strategy performed and how her neighbors
did in the previous round. Each player looks at the payoffs she
obtained as well as those of her eight neighbors, figures out
which payoff is the highest, and then adopts the strategy used by
that player. As noted before, this scheme does not work in the
first round—there are no prior payoffs to evaluate—so strategy
choices will be assigned at random. While perfectly plausible, to
me at least, this decision rule is created out of whole cloth. | do
not justify it as emerging out of some other generally accepted
framework.

A. Initial Examples

Before looking at the examples, note that all-left and all-
right are both Nash equilibria and absorbing states (meaning
that the model will not change from the state once it is reached).
As will become clear, Nash equilibria and absorbing states are
not interchangeable: we will have absorbing states in the models
that are clearly not Nash equilibria. To see that all-left and all-
right are Nash, if a given player thought that every other player
was going to play right, she clearly would play right. She would
get zero if she played left and a payoff of 8b from playing right.
The same holds for left: if the player expected everyone else to
play left, she would play left and get 8 rather than play right and
get zero. Obviously, these two Nash equilibria in the spatial co-
ordination game track those seen in the free-standing game.
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All-left and all-right are also absorbing states—fixed points
given the decision rules used. If everyone has played right, each
player observes only how right has done, and therefore chooses
right. If everyone plays left, each player observes only left out-
comes, and chooses only left. As should be clear, the extent of ini-
tial variation in the number of players playing left or right will
be important. To see this result, I will start with a few examples
to give you a sense of the variety of behavior seen in this frame-
work. Start with b = 1.05 and assume that the equal number of
players initially play the left and right strategies. Figures P1 to
P6 on the color insert show six snapshots of the evolution of this
model.*

As is evident, this model converges to a mixed equilibrium,
with large numbers of players adopting each strategy.”” Of
course, this mixed equilibrium is inefficient, as the social opti-
mum is achieved when all players play right. Nonetheless, this
result is not too surprising. The value of getting to the right
equilibrium is low—1 versus 1.05—and the initial starting condi-
tions do not tilt the tables significantly in favor of one of the
equilibria.

Consider a second example. Bump b up to 1.25 and again as-
sume that left and right are initially played in equal numbers.
Figures P7 to P12 on the color insert show six snapshots of the
evolution of this model.®* All we have done is increase the value
of coordinating on the second equilibrium, and now the model
converges to the social optimum. Nonetheless, simply increasing
b to 1.25 is not enough to assure convergence to the right equilib-
rium. Let 80 percent of the players start with the left strategy
and 20 percent with the right, and consider the five snapshots of
the model given on the color insert as Figures P13 to P17. Once
again, the model fails to converge completely.*

This outcome highlights the difference between absorbing
states—fixed points—and Nash equilibria. The result in Figure
P17 is an absorbing state, but it is not a Nash equilibrium. The
diagram below sets out the relevant chunk of the final result:

* To see this evolution directly, play the video at my website (cited in note 52).

® 1 mean “mixed” in the sense of having both strategies played at the same time by
different players; | do not mean “mixed” in the sense of one player playing both strategies
with some positive probability. For a discussion of mixed strategies played by single play-
ers, see Baird, Gertner, and Picker, Game Theory and the Law at 37-39 (cited in note 5).

° See the website (cited in note 52).

“ 1d.
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Figure P1

Figure P4

Figure P5 Figure P6

b =1.05, Initial Setup: 50% Left, 50% Right
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Figure P11 Figure P12

b =1.25, Initial Setup: 50% Left, 50% Right



Figure P13 Figure P14

Figure P15 Figure P16

Figure P17

b =1.25, Initial Setup: 80% Left, 20% Right
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Figure P21

Figure P22 Figure P23

Norm Seeding: b = 1.65, Nine Cluster Start
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Diagram 3

To understand why this equilibrium is not Nash, focus on
the red (R) cell at the corner of the cluster of nine reds. Round af-
ter round in this model, this cell continues to play right and re-
mains red because it observes the red at the center of the cluster
of nine reds receiving a payoff of 8b. This payoff, of course, is the
best possible outcome in the model, and, on my assumed strategy
for making decisions, any player who observes that outcome
adopts right as her strategy. Nonetheless, this strategy cannot be
a Nash equilibrium unless right is the best strategy for this
player given all of the other strategies. Our corner red expects,
however, three of her neighbors to play right, and five to play
left. Given those strategies, she gets a payoff of 3b if she played
right and a payoff of 5 from playing left, so she should switch
strategies, so long as b < 1.67.

What should we make of this outcome? This particular
mixed play absorbing state is sustainable only if we have “irra-
tional” play round after round. Our corner red continues to play
red because the center red is doing so well, even though the con-
text in which the center red plays is quite different from corner
red’'s own setting. We might feel the need to abandon Nash ap-
proaches initially because they depend on highly refined intro-
spection driven by high-level reasoning abilities. Nonetheless, we
should be equally uncomfortable about results that depend on
seemingly implausible play into perpetuity. Some middle ground
may be more appropriate,®® but, in any event, the approach taken
in this paper builds or constructs an absorbing state based on a
minimal set of key ideas. This generative approach may offer a
more plausible account of how equilibria are actually achieved.*

® See the suggested directions for future research at text following note 93.
* This parallels—indeed, overlaps with—the recent work in evolutionary game the-
ory. See note 44.
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A. The Emergence of a Phase Transition

The preceding examples give a flavor for the range of be-
havior that arises in the model. To get more systematic, | set b =
1.65 and ran sets of 100 simulations of the model for different
initial densities. The results are set forth in Figure 1. To be clear
on the meaning of the figure, I ran 100 simulations of the model
with b = 1.65 for each of the initial densities shown along the x-
axis (9900 simulations total). The three graphs in Figure 1 cap-
ture three possible results. All of the players could converge on
playing right (“Red”); all could converge on left (“Blue™); and
some could converge on left while others played right (“Mixed”).

b = 1.65 Highest Choice Rule
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Figure 1

The graphs chart the number of times each possible outcome
occurs in the 100 simulations for each initial value. If we start
with 1 percent of the players playing left and 99 percent playing
right, then in 100 times out of 100, the play of the game con-
verged on the right-right (or all-red) equilibrium. In contrast, if
we start with 99 percent of the players playing left and 1 percent
playing right, then in 100 percent of the cases we converged on
the inferior all-left equilibrium.

Neither of these results is surprising. The good (right) equi-
librium, however, is particularly robust. Even if we start in tough
conditions—say with 80 percent of the players playing left and 20
percent playing right—we still converge on the good equilibrium
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in 100 percent of the cases. As we push the initial density of
players playing the inferior choice ever higher, however, we run
into problems. Some fraction of the simulations converge to the
inferior equilibrium. By the time we reach just a bit more than
89 percent of the players playing left initially, the graphs cross:
as many simulations converge on the bad equilibrium as con-
verge on the good equilibrium. If we have more players choose
initially the inferior strategy, more and more of the simulations
converge on the inferior equilibrium. As we reach our maximal
densities, the rout is complete, and all of our simulations con-
verge on the inferior equilibrium.

The shape of these graphs is characteristic of a phase transi-
tion in physics or a model of punctuated equilibria in biology.*
The system has two natural equilibria and shifts from one to the
other occur over a narrow band. The combination of a standard
two-by-two game and some neighborhood effects results in this
phase transition.

What is going on here? Why is it that this system converges
so well and why do we start to encounter trouble when 85 per-
cent of the players initially choose the inferior play? To under-
stand this phenomenon, start with a cluster of nine red cells sur-
rounded by a sea of blue:

B(B|B|B|B|B|B (B |B
B(B|B|B|B|B|B (B |B
B(B|B|B|B|B|B(B|B
B (B|B|R|IRI|R|B (B |B
B (B|B|R|IRI|R|B (B |B
B (B|B|R|IRI|R|B (B |B
B(B|B|B|B|B|B (B |B
B(B|B|B|B|B|B (B |B
B(B|B|B|B|B|B (B |B
Diagram 4

Focus on decisionmaking by the players in the red cells.
Each border red will observe the payoff of the center red, who
will be getting 8b (that is, the center red interacts with eight
players playing the strategy that she has played, so she is per-
fectly coordinated with her neighbors). The best blue cell that our
border red could see has a payoff of 7. No border red will switch.

® See, for example, Stuart Kauffman, At Home in the Universe 57, 116-18 (Oxford
1995); Stephen Jay Gould and Niles Eldredge, Punctuated Equilibria: The Tempo and
Mode of Evolution Reconsidered, 3 Paleobiology 115 (1977).
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The center red, of course, has received the best payoff possible,
and will see no reason to switch given the decision rule.

Now focus on the blue cells bordering the cluster of nine
reds. There are four corner blues. A corner blue will see the best
blue cell receiving a payoff of 8. The only red cell that it sees re-
ceives 3b. Given our numbers, a corner blue will switch only if
b > 8/3 or 2.66. Of the remaining blue cells, there are eight off-
center border blues. Each will see a blue cell receiving 8, while
the best red cell seen—the middle border red—uwill be getting 5b.
The off-center border blue will switch if b > 8/5 or 1.6. Finally,
the analysis for the four center border blues tracks the analysis
for the other border blues. Accordingly, if b > 2.66, all of the bor-
der blues will switch strategies; if 1.6 < b < 2.66, all of the non-
corner blues will switch, while if b < 1.6, no blue cells will change
over.

Already, under this decision rule, we can have pockets of
players playing blue and red simultaneously, if the benefits of co-
ordinating on strategy right are not sufficiently great. This situa-
tion will give rise to clusters of blue cells and clusters of red cells
and we will see a model in which multiple norms, conventions, or
decentralized rules are in use at the same time.

Consider the intermediate case and roll over the cells to the
next generation.

W |W|®™|0|C0|00|W@|T |
W|W|W|W|CO|W|W|W|W
W|W|W|W|CO|W|W|W|W
W |W|®|0|C0|00|W@|T |

Diagram 5

Nothing has changed for the red cells: the original cluster of nine
play as before. Each yellow cell—recall that these are players
who had been playing strategy left and who have now switched to
strategy right—will see a red cell receiving a payoff of 8b. Each
yellow cell will therefore play strategy right again (and will turn
red in the next round).

Now examine the blue cells as we did before: cell by cell. The
former corner blues still see a blue cell playing with eight neigh-



1997] Simple Games 1253

boring blues, but will now see the best red cell playing with seven
neighboring reds. The old corner blue will thus switch if 7b > 8,
or if b > 1.14. The new non-corner border blues will each see a
red playing with five reds, and thus will switch if b > 1.6. The
new corner blues will compare 8 with 4b, and will switch if b > 2.
The second iteration thus plays out in one of two fashions de-
pending on whether b is less than or equal to 2.°°

Where b > 1.6, there is a powerful drive in the system to
converge on the correct equilibrium. The model, however, does
not necessarily get there. | started the cluster analysis with a
block of nine red cells, but the relative scarcity of right strategy
players may prevent the use of such a starting cluster. For ex-
ample, suppose that the largest cluster of red cells is a square
block of four cells, surrounded by a sea of blue. Each red cell will
receive a payoff of 3b, or 4.95 if b = 1.65. The best blue cell seen
by each red cell will be the blue cell cater-corner to it. The blue
cell will touch seven other blues and one red cell, and thus will
receive a payoff of 7. Each red cell will switch strategies in the
next round. This cluster is too small to support growth and it
dies.”

When b = 1.65, our cluster of nine red cells grows until it
spreads throughout the entire domain, while our cluster of four
red cells withers. A little bit more analysis makes clear that a
two-by-three cluster of six red cells survives and grows when b =
1.65. Again, surround our cluster of six red cells with blue cells
and consider the choices that each will make. Each red cell sees
another red cell that received 8.25 (or 5b) in the previous round.
(In other words, each red cell sees at least one other red cell that
has five red neighbors.) The payoff of 8.25 exceeds the highest
payoff that a blue cell could enjoy—namely 8—and thus no red
cell will switch in the next round. What will the neighboring blue
cells do? Each of these neighboring blue cells sees a red cell re-
ceiving the 8.25 payoff. Again, they will see no blue doing better,
so they will all switch. We now have a cluster of nine red cells,
and the above analysis applies.” Finally, to complete the analy-
sis, consider a cluster of five red cells. The best red payoff will be
4b, or 6.6. Four of the five red cells will see a blue cell receiving a
payoff of 7, and they will switch, then the fifth red cell will follow

® To see this pattern directly, play the video with a nine red cell starting point at my
website (cited in note 52).

* To see this pattern directly, play the video with a four red cell starting point at my
website (cited in note 52).

® To see this pattern directly, play the video with a six red cell starting point at my
website (cited in note 52).


http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
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in the next round.” Six cells thus sustain growth while five cells
do not when b = 1.65.

We can now make a bit more sense of Figure 1. The charts
represent exercises in applied probability. We know now that a
cluster of six grows indefinitely until every player plays the so-
cially preferred strategy. If we initially assign strategies at ran-
dom, what is the probability that we will have one or more of the
growth clusters? We could answer this question algebraically, but
the chart itself provides the answer. For example, when we start
with 90 percent of the players playing left and 10 percent playing
right, then 55 times out of 100, we do not get at least one of our
growth clusters. Absent a growth cluster, the small, scattered
clusters of red die, and we converge to the inefficient blue equi-
librium.”

To put this in a different language—that of dynamic sys-
tems—we have mapped the basin of attraction for each of our
point attractors. The basin of attraction for an attractor—or the
catchment basin—is that chunk of the possible set of starting
conditions that leads to that attractor.” (The attractors in this
example are the two Nash equilibria.) Think of a ball rolling over
an undulating surface: at some point, the ball falls into a steep
depression—this is a physical description, obviously, and not a
statement of the ball’'s state of mind—and eventually comes to
rest in that hole. That hole is an attractor and the starting points
on the surface that result in the ball coming to rest in that par-
ticular hole form the basin of attraction for the hole. So, to return
to the diagram, the basin of attraction for the red equilibrium in-
cludes initial distributions of 1 percent left to 85 percent left,
while the corresponding basin of attraction for the blue equilib-
rium covers 96 percent left to 99 percent left. Initial distributions
between 86 percent left to 95 percent left are as if our ball is
running along an edge that separates the two basins of attraction
and a slight nudge in one direction or the other pushes the ball
into one equilibrium or the other.

® To see this pattern directly, play the video with a five red cell starting point at my
website (cited in note 52). Note that there is not a unique way of laying out the five cells.
This observation was true for our prior examples as well, but | have emphasized relative
compactness of the cluster, and that gave a simple representation of the cluster.

® To see an example of this pattern, play the video at my website (cited in note 52).
As both Dan Klerman and Seth Chandler noted in e-mails to me, this is one place where
the size of the lattice matters. The bigger the lattice, the greater the chances of a growth
cluster forming in the initial set of random plays.

™ For an introduction to these ideas, see I.M.T. Thompson and H.B. Stewart, Non-
linear Dynamics and Chaos 9-12 (Wiley 1986).


http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
http://www.law.uchicago.edu/Picker/aworkingpapers/norms.html
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Step back and now ask what we should make of this discus-
sion. First, this game is path dependence writ large. The conver-
gence of this system largely depends upon the initial starting
conditions. The literature on path dependence grows by the day,”
and this model gives a crisp example of this phenomenon. Sec-
ond, and perhaps of more interest given what we already know
about path dependence, this setup converges on the superior
equilibrium even in the face of tough starting conditions. If we
just started with our free-standing coordination game, we could
say very little about the likelihood that we would converge on the
right equilibrium. Now, we should take some comfort that this
system will get to where we want it to go.” In real situations, we
might think of the initial choice of strategy as indeed random.
This example says if these choices are essentially coin flips—a
50/50 chance—the model will always converge to the right norm.
Even if the choice is substantially biased against the good strat-
egy, we still converge on the best norm. (If we replace the coin
with a single die, and play right only if six comes up, we still get
to the good equilibrium.) And my intuition says that the bias
should run in favor of the good strategy if players are choosing
between both strategies at the same time. | have offered no other
story of salience here other than the potential value that results
from successful coordination. We should think that the extra
value available would push us away from a 50/50 chance to odds
favoring the good strategy.

This outcome is good news. We see a good chance of success-
ful coordination on the right norm. We also see that it is easy to
overstate the problems that define the coordination game and
justify legal intervention. At least in this particular framework
and on these values, | believe that it is highly unlikely that we
would end up in the inferior equilibrium. For the inferior equilib-
rium to win over our players, we need either extremely bad luck
or something that makes the inferior strategy especially salient.

Before leaving this particular example, we should look at one
other variable of interest. The graph of the red outcomes in Fig-
ure 1 appears to be one of unremitting sameness until we get to
particularly skewed distributions of initial choices at the end.

” See, for example, W. Brian Arthur, Competing Technologies, Increasing Returns,
and Lock-In By Historical Events, 99 Econ J 116 (1989) (exploring “the dynamics of allo-
cation under increasing returns in a context where increasing returns arise naturally:
agents choosing between technologies competing for adoption”).

” Substantially more general results in a related model of coordination games re-
garding the success of convergence to the good equilibrium are obtained in Kandori,
Mailath, and Rob, 61 Econometrica at 44 (cited in note 44). See also Ellison, 61
Econometrica at 1066-67 (cited in note 44).
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Value after value ends up in the same place. But this graph
omits the path of convergence to the social equilibrium. These
paths actually look quite different, as Figure 2 should make
clear. Figure 2 charts the average number of periods that the
model used to converge to the red equilibrium. These numbers
increase steadily, but slowly, for an extended period before
reaching a region of a sharp increase in the time to convergence.
Unsurprisingly, the initial distribution of strategy choices sets
the ultimate rate of convergence to the good social equilibrium.
Still, more comfort is found here. For values in the middle of the
distribution, the time to convergence is relatively modest.™

b = 1.65: Number of Rounds to Red Convergence
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Figure 2

B. Two Phase Transitions and Mixed Play

So far we have looked at nearly ten thousand simulations of
a ten thousand player model for a single value of b = 1.65. The
next step is to understand how these results change as we alter
the value of b. Start by noting that there is an inverse relation
between the value of b and the minimal cluster required to as-
sure convergence to the social optimum. Larger b values will

™ The convergence times are also determined by the rules used to match players of
the coordination game. The model used here fixes these matches in the initial nxn grid.
Other matching rules might very well alter this pattern of convergence. Compare Ellison,
61 Econometrica at 1060-62 (cited in note 44).
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support smaller initial growth clusters; smaller b values will re-
quire larger initial clusters. For example, a cluster of four red
cells will survive and grow if b > 2.66. Each of the red cells re-
ceives a payoff of 3b, which is greater than 8 if b > 2.66. These
red cells will thus stay red. Adjacent blue cells will switch strate-
gies, as they will see a red cell receiving more than 8 while no
blue cell can do better than 8. We can still end up in the ineffi-
cient norm equilibrium, but that result would occur only if no
cluster of four red cells formed in our initial distribution of
strategies. As we increase b beyond 1.65, we keep pushing to-
ward the right edge of the figures, until virtually all of the mod-
els converge to the good norm equilibrium.

So move b in the other direction and return to our discussion
of the cluster of nine red cells. As noted above, when b < 1.6, the
neighboring blue cells do not switch over. The blue cell most
likely to switch sees at least one blue earning 8, while the best
red cell seen will earn 5b. When b < 1.6, the payoff for 5b is less
than 8, and the blue cell stands pat. This situation raises the
possibility of a mixed outcome, where some players play perpet-
ual left, while other players play perpetual right. Indeed, were
we to start with a single cluster of nine red cells and all other
cells blue, the model would not move an inch. To see the latter
point more clearly, | reran the model above with b = 1.55 and ob-
tained the results in Figure 3. The setup here is the same as be-
fore, save for the revised value of b, but the results change sub-
stantially. As predicted, we see a region in which the model con-
verges to an outcome in which some players are playing left,
while others play right.
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b = 1.55 Highest Choice Rule
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Figure 3

Figure 3 again graphs the number of all-red outcomes, all-
blue outcomes and mixed outcomes against the initial blue densi-
ties. In broad terms, there are five distinct bands of behavior and
two different phase transitions. For initial blue densities of 1 to
73, the model converges to the all-red equilibrium. The time to
convergence is influenced by density—I do not set this chart out
but it looks like the one in Figure 2—but we eventually get to the
right steady state. We then reach our first phase transition: we
move from the good all-red equilibrium to a mixed absorbing
state, where the model locks on a mixture of left and right play-
ers. This transition occurs between initial blue density values of
74 and 76. For initial blue densities of 77 to 86, we converge to
the mixed equilibrium. The second phase transition Kicks in at
an initial blue density of approximately 87 and is over by the
time we get to 92. At that point, we move away from the mixed
absorbing states to the bad all-blue equilibrium. Finally, for ini-
tial blue densities of 92 to 99, we converge to the blue equilib-
rium.”

The existence of three different steady-state regions and two
phase transitions is an important change from the prior analysis.
Convergence on all-blue or all-red means that we eventually see

1 should note that at an initial density of 76, four of the one hundred simulations
did not converge before reaching the then-applicable limit of two hundred and fifty gen-
erations.
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society using only one norm. The good norm drives out the bad
norm (or vice versa). We do see both norms in use out of equilib-
rium when b = 1.65, but only until we move to fixed, uniform
play. In contrast, when we reduce b just slightly, we see a region
in which we have two norms at work, in perpetuity. If our focus
is on whether we will converge to the good norm, we should be
reasonably confident that we will: so long as the initial density of
players playing left is less than 74 percent, we converge to the
good norm 100 percent of the time. Certainly this outcome repre-
sents a substantial drop from the results when b = 1.65, as we
converged successfully in 100 percent of the cases up to an initial
left density of 85 percent. But again, absent something that
makes the left strategy particularly salient, we should expect to
reach the good equilibrium.

Figures 4 through 8 set out runs of the same model with b
set at, respectively, 1.35, 1.15, 1.14, 1.10, and 1.05. Remember
that these values for b do not upset our rule that the all-right
equilibrium is always better than the all-left equilibrium, but
when b = 1.05, the differences are quite small. A quick glance at
these figures reveals several facts. First, in each figure, we get
three final state regions: all-red, all-blue, and mixed. Second, we
see sharp phase transitions from region to region; change in the
ultimate equilibrium is driven by a small fraction of the entire
parameter space. Third, the location of these regions moves sys-
tematically as we reduce b. The right-most point where 100 per-
cent of the simulations converges to the good norm decreases
from 65 percent when b = 1.35 to 60 percent when b = 1.15; to 17
percent when b = 1.14; to 16 percent when b = 1.10; and then fi-
nally jumps up a bit to 17 percent when b = 1.05. Again, to return
to the language of dynamic systems, the basins of attraction for
the two point attractors change systematically as we reduce b.
The basin of attraction of the good equilibrium shrinks steadily
and then dramatically, while that for the bad equilibrium grows
slowly over time.
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b =1.35 Highest Choice Rule
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b = 1.14 Highest Choice Rule
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b = 1.05 Highest Choice Rule
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As this analysis should make clear, we can remain fairly con-
fident that the model will converge on the good norm so long as b
is at least equal to 1.15. The chance that we will end up else-
where, in one of the mixed play outcomes or the all-blue outcome,
does rise as the value of b falls. But so long as not more than 60
percent of the players play left initially, we will converge on the
good norm even if b = 1.15. This outcome again should be quite
reassuring. If two norms are competing and one norm is better
for everyone than the other by at least 15 percent, we will con-
verge on the good equilibrium. Put differently, if the gains from
getting to the right equilibrium are sufficiently large, we will get
there. We could not get that result out of our free-standing coor-
dination game, where we could only identify our two Nash equi-
libria and then punt. Moving to the good equilibrium when there
is a substantial advantage to doing so instinctively seems right
and it is comforting to see this result emerge in the model.

Note also the sharp break between 1.15 and 1.14. The prob-
ability of ending up in the good norm equilibrium in all cases
plummets within this twilight zone of b values. The best bet here
is that we will end up in a mixed play region. We will see both
norms extant in the society, and perhaps in significant numbers.
And this result holds as we move b toward 1. There are two
natural questions. First, why the sharp change at this point?
Second, are all the mixed outcomes identical, or are there mean-
ingful differences for different initial densities, even if we know
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that we end up in mixed play in 100 percent of the cases? Start
with the second question and consider Figure 9:

b =1.14: Average Number of Red Cells
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Figure 9

Figure 9 charts the average number of red cells in the even-
tual end state for the one hundred simulations for each initial
density. Obviously, if all one hundred simulations converge to the
all-red equilibrium, the average is the entire board of 10,201
cells. And, if each of the simulations converges to all-blue, there
will be no red cells. The regions of interest are the two phase
transitions and the mixed play region. As inspection of Figure 9
makes clear, all mixed play outcomes are not created equal. In-
deed, these outcomes systematically move from being mainly red,
to being a fair mix of both blue and red, to being almost exclu-
sively blue. Again, this outcome represents substantial and un-
surprising path dependence.

Now consider the first question: why the sharp transition be-
tween 1.15 and 1.14? The simple answer is that 7 times 1.14 is
7.98, which is less than 8, while 7 times 1.15 is 8.05, which is
more than 8. To see why this difference matters, consider a clus-
ter of nine blue cells surrounded by a sea of red (this is the flip of
our prior example, where we started with a cluster of nine red
cells):
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Diagram 6

The red cells are all rock-solid here, so long as b > 1. Each red
cell either will see a red receiving 8b or be such a red, and the
best blue cell that could be observed can do no better than 8. No
red cell will switch.

Next consider the blue cells, and start with a corner blue as
that is the one most likely to switch. A corner blue will see the
center blue receiving a payoff of 8 and the best red cell—the one
cater-corner to it—receiving a payoff of 7b. That blue will stay
blue if 7b < 8, or b < 8/7. The corner blue thus remains blue at b
= 1.14 and switches at b = 1.15. In other words, a cluster of nine
blue cells cannot be invaded if b < 8/7, and a mixed play outcome
will result. In contrast, if b > 8/7, the four corner blues will
switch to red, and the remaining blues will soon follow in subse-
guent rounds.

What should we make of this analysis? In one way, it should
be quite comforting. If we have “reasonable” initial blue densities
and sufficient benefit from the superior equilibrium, we converge
to the good equilibrium. These circumstances may be present in
many cases. For example, if two norms or standards are com-
peting at the same time, with both trying to emerge as the ac-
cepted convention, we should anticipate that the middle initial
densities will be most important. In contrast, if norms are com-
peting over time—if one standard is the convention, and the
situation evolves so that a new convention is socially preferable—
society will be at either end of the initial densities. The low val-
ues in the parameter space will give us a sense of how successful
a new standard will be in displacing a preexisting standard. In
that case, we should be much less sanguine that our model will
get to the right outcome.
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D. Variations on the Model

Altering basic features of the model allows us to evaluate if
and how these features drive the results of the model. In this sec-
tion, 1 will discuss four variations of the original model: (1) a dif-
ferent decision rule; (2) a different payoff neighborhood; (3) dif-
ferent information assumptions; and (4) an alternative approach
to parallel decision processing. Take these variations one by one.

1. Different decision rule.

Thus far, | have used a particular decision rule without of-
fering any particular justification for the choice. | believe it a
plausible rule, but not the only rule. It might be worth exploring
the choice of decision rules systematically, but, to provide just
one source of comparison, consider the following rule. Suppose
that instead of choosing the strategy with the highest payoff from
the nine observed results, our players choose the strategy with
the highest average payoff. This rule imposes a much more se-
vere calculation burden, but not one that we should deem too
daunting.”” How do the results change with the new decision
rule?

Figures 10 to 14 set out the results when b is set to, respec-
tively, 1.65, 1.35, 1.15, 1.10 and 1.05. A quick look reveals that
the basic shape of the results is quite similar, but the precise
break points do change in important ways. The one change in
shape that we do see is mixed play regions at all values of b, even
when b = 1.65. Again, if we believe that mixed play is important,
the revised decision rule validates that possibility. The other in-
teresting change is that we sustain 100 percent convergence to
the good norm for lower values of b. For example, when b = 1.10,
we get 100 percent convergence even with initial blue densities of
54 percent. Recall that under the highest decision rule, when b
was 1.10, we lost 100 percent convergence when the initial blue
density exceeded 16 percent. This difference is substantial, not
only in absolute terms, but relative to where we think we are
likely to be. If you believe that at least 50 percent of the players
should adopt the good strategy, the highest average rule provides

® To see an example of this, return to Diagram 4 and focus on the decisionmaking of
a corner red. Under the highest payoff rule, the corner red bases its decision on the payoff
of the center red, as that will be the highest observed payoff. Under the highest average
payoff rule, the corner red is red, obviously, sees three other reds, and sees five blue cells.
The blue cells receive payoffs of 5,6,7,6, and 5 for an average payoff of 5.8. In contrast, the
observed red cells have payoffs of 5b, 8b, 5b, plus the cell itself obtaining a payoff of 3b.
The average red payoff is 21/4b or 5.25b. The corner red will switch if 5.8 > 5.25b, or b <
1.105, and will stay otherwise.
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real evidence that we will converge on the good norm even when
the good strategy provides relatively insignificant benefits (10
percent). We lose this result when b drops to 1.05—100 percent
convergence to the good norm occurs last at an initial density of
43 percent—but this change is still a substantial improvement
over the original decision rule. Again, altering the decision rule
changes the relative size of the basins of attraction for our equi-
libria.
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b =1.10 Highest Average
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2. Different payoff neighborhood.

A second way to change the model is to switch payoff neigh-
borhoods. We have focused on the Moore neighborhood, which
likely drives particular features of the results. The significance of
1.6 and the breakpoint between 1.14 and 1.15 are both functions
of having eight neighbors. As discussed before, the second promi-
nent neighborhood used in the cellular automata literature is the
Von Neumann neighborhood (see Diagram 2). This payoff neigh-
borhood starts with a center cell and adds its North, South, East,
and West neighbors. Figures 15 to 18 set out results for the Von
Neumann version of the model with b set at, respectively, 1.65,
1.35, 1.30, and 1.15:
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b = 1.35 Highest Choice Rule - Von Neumann
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b = 1.15 Highest Choice Rule - Von Neumann
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We do see important differences in the results. The mixed
play region exists even when b = 1.65, and the last 100 percent
convergence to the good norm drops from 85 percent in the origi-
nal Moore version to 78 percent in the Von Neumann version.
The results at b = 1.35 are almost identical for the two neighbor-
hood versions. Note also that we get a break point at 1.33 rather
than 1.14, so when b = 1.30, we find that a large mixed play re-
gion emerges. Again, this outcome is important, because it sug-
gests that even with gains as large as 30 percent—with b = 1.30
the good norm is that much better—we cannot be confident that
the model will converge on the good equilibrium.”” Comparing the
results of the Von Neumann and Moore neighborhoods therefore
suggests that a bigger payoff neighborhood increases the chance
that the model will converge on the good norm.™

3. Different information assumptions.

To see a simple example of how a small change can alter the
results of a model substantially, alter the information neighbor-
hood. Recall that the payoff neighborhood is made up of the

 As to why b = 1.33 matters, see note 81.

" This result needs more analysis. Berninghaus and Schwalbe reach the opposite
conclusion in a related model: “The smaller this reference group, the higher the probabil-
ity that an efficient equilibrium will be reached.” See Berninghaus and Schwalbe, 29 J
Econ Behav & Org at 79 (cited in note 44).
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neighboring cells whose actions directly influence payoffs. The in-
formation neighborhood is the neighborhood that a given cell ob-
serves and provides information that players can use to formu-
late the choice of strategy in the next round. In all of the prior
examples, the payoff neighborhood and the information neigh-
borhood have been coextensive.

Now switch the assumptions. Set the payoff neighborhood as
the Moore neighborhood and let the information neighborhood be
the five-by-five cluster of twenty-five cells centered around the
payoff neighborhood. Put differently, the payoff neighborhood
starts with a single cell and extends out one cell in all directions.
The information neighborhood starts with a center cell and ex-
tends out two cells in all directions. Payoffs are determined as
before, but now each player chooses her next strategy based on
the strategy yielding the single highest return in the twenty-five
cells that the player observes. Figures 19 through 21 reflect the
runs with b set at, respectively, 1.65, 1.35, and 1.10:
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b = 1.35 Highest Double Search Rule
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How does this model compare to our prior results? In the
new results, when b = 1.65, there is little change, but when
b < 1.6, the results change dramatically. We lose the mixed equi-



1997] Simple Games 1274

librium outcomes, and there is a single phase transition, moving
from the superior equilibrium to the inferior equilibrium. The
superior equilibrium is also reached much more often. In the
original example, when b = 1.10, the region of 100 percent con-
vergence on all-red ended at 16 percent, but with more informa-
tion, that changes to 70 percent. Adding the additional layer of
information enlarges the basin of attraction for the good equilib-
rium. A much larger set of initial conditions funnels into the good
equilibrium.

Why the dramatic shift? Return to Diagram 4, where we had
a cluster of nine red cells surrounded by blue cells. We noted be-
fore that the red cells would not change, so long as b > 1. Each
red cell sees the center red receiving a payoff of 8b, and no player
can do better than that. Whether the neighboring blue cells
turned over depended on how b compared to 1.6. If b > 1.6, the
adjacent blue cells flipped over, but if b < 1.6, they all held firm.
In the first case, the model would converge to the all-red equilib-
rium; but in the second, we reached a mixed outcome.

Now think about extending the information seen by the
players. The cluster of nine red cells is as before: Each sees the
center red receiving 8b, and no one will switch. But the border
blue cells now see the red cell in the center of the cluster of nine.
When the blue cells could see out only one level, they saw only
their immediate neighbors. Seeing out two levels brings the cen-
ter red cell within view. The red cell does the best that anyone
could do, and the blue cells shift. Note that this outcome holds
regardless of how big b is, so longas b >1.”

We do not always reach the good equilibrium, nor is the size
of the gain from getting to that equilibrium irrelevant. The
graphs make clear that if we start with too many players playing
the inferior strategy, we will converge on the inferior equilib-
rium. The size of the minimum cluster necessary to sustain
growth is still determined by b. So long as we have at least one
cluster of nine red cells, however, the model will converge to the
right social norm whenever b > 1. Whether such a cluster exists
is purely a question of probability and is independent of the size
of b, but does depend on the size of the lattice itself.

There is one other point of interest. Figure 22 sets out a
comparison of the results for convergence to the good equilibrium
as a function of the information available when b = 1.65:

™ To see this pattern, play the video that starts with a single cluster of nine red cells
and b = 1.01 at my website (cited in note 52).
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The first two graphs—Ilabeled “Red 1x” and “Red 2x"—just
repeat the results from before when we set the information
neighborhood equal to, respectively, the Moore neighborhood and
the double Moore neighborhood. The third graph subtracts the
number of times the model converged to the good equilibrium for
the double Moore test from the single Moore test. Save for one
density, we converge to the good equilibrium more frequently
when we have less information. Believe it or not, when we give
the players more information, we end up at the wrong equilib-
rium more often.

The double Moore results move to the inefficient blue equi-
librium more often, sometimes substantially so (look, for exam-
ple, at the spike in Figure 22 when initial blue density is 88).
This result looks like a herd behavior in action,®® but is less obvi-
ously tied to hidden information. Our players are not necessarily
worse off with the additional information, as the double Moore
model converges much more quickly (see Figure 23). This speed-

® Herd behavior arises when dispersed information is aggregated inappropriately. A
chain of inferences arises that, while individually rational, leads the society—the herd—
down the wrong path. In real life, you see this behavior frequently at traffic lights, where
a few pedestrians trying to cross against the light lead an entire group into the street.
See generally Abhijit V. Banerjee, A Simple Model of Herd Behavior, 107 Q J Econ 797,
798 (1992) (defining herd behavior as “everyone doing what everyone else is doing, even
when their private information suggests doing something quite different”); Baird,
Gertner, and Picker, Game Theory and the Law at 213-17 (cited in note 5).
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ier convergence is a good thing, and we need to explicitly weigh
faster outcomes against the possibility of more wrong outcomes.

b = 1.65 Search Depth Convergence Comparison
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As a second example of how changes in information alter the
results of our model, consider Figures 24 to 26. These runs use a
Von Neumann payoff neighborhood and a Moore information
neighborhood. Payoffs are therefore determined by the North,
South, East, and West neighbors, but players receive information
about strategy results from all eight of their immediate neigh-
bors. The figures report results for b = 1.65, 1.35, and 1.15.
Again, note how increasing information makes it more difficult
for mixed play to be sustained. Recall (see Figure 15) that in the
original Von Neumann run with b = 1.65, we had a substantial
mixed play region, and we lost 100 percent red convergence at an
initial blue density of 78 percent. The revised model (see Figure
24) has no mixed play region at all and converges successfully to
the good equilibrium 100 percent of the time up to an initial left
density of 89 percent.
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b = 1.65 Highest Choice - Von N Payoff/Moore Info
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b = 1.15 Highest Choice - Von N Payoff/Moore Info
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The same result holds at b = 1.35. Before (see Figure 16), we
had mixed play and 100 percent red convergence through 67 per-
cent. In the revised model (see Figure 25), no mixed play occurs
and 100 percent red convergence runs through 88 percent. But
these are not general results, as Figure 26 makes clear. With b =
1.15 and the Von Neumann/Moore fusion, there is a mixed play
region, and we lose all-red convergence at 64 percent. This
change in the basin of attraction for the good equilibrium is a
sizable improvement over the purely Von Neumann run (see Fig-
ure 18), where all-red convergence was lost at 8 percent.”

* If you have followed this analysis so far and care why the results change with the
switch to the Moore neighborhood, the key point to note is that when b > 1.33, a red Von
Neumann cluster will be a growth cluster when the model uses a Moore information
neighborhood. When we start with five red cells in the form of a cross, none of the red
cells will change. The four red cells forming the arms of the cross will observe the center
red, who receives a payment of 4b, the best possible payoff. None of the red cells will
switch. Focus next on the four blue cells that complete the Moore neighborhood. Each of
these cells now observes the center red. Note importantly that they would not have seen
this red with Von Neumann vision, as the center red is on their diagonal and thus would
be out of their sights. With the Moore information neighborhood, they too see the center
red, and they switch over. This switch creates a cluster of nine red cells, surrounded by
sixteen blue cells. The non-corner blue cells—all but four obviously—will each see one red
cell receiving a payoff of 3b, the center-edge red. The best blue cell that they observe will
receive a payoff of 4, and the non-corner border blue cells will switch if 3b > 4, or b > 1.33.
This iteration drives the model round after round to the red equilibrium. To see the evo-
lution of this model directly, play the video at my website (cited in note 52).
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Finally, consider one last information comparison. Suppose
that we let each player observe all of the other players’ payoffs.
Also assume that each player adopted the strategy with the sin-
gle highest payoff that the player observed. As should be clear,
each player will adopt the same strategy immediately, and the
model converges to an all-blue or all-red absorbing state almost
immediately. Figures 27 and 28 do just this for b = 1.65 and b =
1.35. The graph labeled “Global” charts the outcomes just de-
scribed. These outcomes are compared with the outcomes from
the double Moore information neighborhood. The results are
guite close. The extended local information is almost equivalent
to having information about the entire board, at least where each
player decides based upon the single highest observed payoff.
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4. Parallel decision processing: SIMD v MIMD.

What appears to be the name of an obscure case, turns out to
be an important issue in approaching parallel programming.
“SIMD” is an abbreviation for single-instruction, multiple-data;
“MIMD” is multiple-instruction, multiple-data. Putting technical
niceties to one side, the key issue is whether all of the players
remain in perfect sync. If you think of the players as executing a
computer program—as they actually do in the computer simula-
tions—does each player execute the same instruction at exactly
the same time? In a SIMD scheme they do; in a MIMD scheme,
they do not. (In reality, the setup is more complicated than this
explanation, as we are using a single processor machine to
simulate a multiple processor scheme, but this really is just a
computational point.)

What turns on whether the players act exactly at the same
time? Turn to Figure 29 and compare it to Figure 4:
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b = 1.35 Highest Choice Rule MIMD Version
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Both models set b = 1.35; both use the same highest choice
decision rule; and both use the Moore payoff and information
neighborhoods. What differs are the results. The MIMD version
(see Figure 29) has a single phase transition, no mixed play re-
gion, and 100 percent convergence on the good social norm at an
initial density for the inferior strategy at 75 percent. In contrast,
our original SIMD version (see Figure 4) has two phase transi-
tions, a mixed play region, and the final 100 percent convergence
on the good social norm at an initial inferior density of 65 per-
cent.

These findings represent mixed to good results. We actually
do better on reaching the good norm equilibrium and should be
even more confident in our prior forecast that if b = 1.35, we will
converge on the good equilibrium. That result, however, comes at
the expense of losing the mixed play region.*

¥ The natural thing to do is to run more versions of the MIMD model to see whether
the mixed play region reappears at lower values of b. Unfortunately, the single run pre-
sented in the paper took twenty-four days of computer time. And, there is substantial
reason to doubt in any event the overall stability of the mixed play region. A large level of
mutations in the players would tend to disrupt the boundaries that define the mixed play
outcomes. Compare Kandori, Mailath, and Rob, 61 Econometrica 29 (cited in note 44).
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IV. SPECULATIONS ON LAW: DECENTRALIZED RULEMAKING,
NORMS AND SOCIAL MEANING

I want to be cautious about inferring too much about the
relative roles of government and the private sectors in these
models. I have said nothing about sources of market failure or of
inadequacies in private ordering, nor have | addressed the range
of infirmities associated with government action. With that ca-
veat issued, | will nonetheless offer the following few speculative
thoughts.

A. Echoing the Free-Standing Coordination Game

The basic coordination game has been the model of choice for
illustrating the problem of coalescing around a Pareto-superior
norm. | had very little to say about the original free-standing co-
ordination game, but, for better or worse, quite a bit to say about
the spatial version of this game. The extended analysis of the ba-
sic spatial game and possible variations reveals that the results
do depend on particular settings of the model. The Von Neumann
variation suggested that the basic problem of the coordination
game might persist, as we faced mixed play outcomes with b as
high as 1.33. To fail to converge on the good norm with this much
at stake is disappointing. Still, the more general message has to
be quite positive, at least for the case of simultaneous norm com-
petition. The basic Moore model did quite well, and the revised
versions did even better. Moving to the highest average decision
rule and adding information typically led to better outcomes.
Whether we think that the government should intervene depends
on quite a lot—see the caveat above—but the model does suggest
that the possible loss of value from inadequate coordination is
naturally self-limiting.** This outcome makes me much less con-
cerned about the problem seen in the free-standing coordination
game.

B. The Importance of Phase Transitions for Policymakers

I find it striking how small ranges matter for the outcomes
in these models. The vast majority of the parameter space is
completely irrelevant to whether the model gets to the right
steady state. | think, on the whole, that the small ranges should
comfort us. If a policymaker were to try to switch this system

® Again, see the prior results to this effect in Kandori, Mailath, and Rob, 61
Econometrica at 44 (cited in note 44); Ellison, 61 Econometrica at 1066-67 (cited in note
44).
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from one equilibrium to the other, the narrow band effect would
work in our favor. If we were near the phase transition, a poli-
cymaker who mistakenly sought to switch from the red equilib-
rium to the blue equilibrium, and who took blue density as the
variable on which to work, might do real damage. Such proxim-
ity, however, would arise from exceedingly bad luck—unless we
have a story as to why these systems should gravitate toward the
point of a phase transition.* Instead, we would expect to be at
some distance from the transition, and one would hope that our
policymaker would get quite discouraged before getting to the
transition point. After all, our policymaker could push blue den-
sities from 50 to 60 to 70 to 80 and accomplish nothing. Few poli-
cymakers would persevere for so long in the face of such appar-
ent failure.”

In contrast, the narrow band effect should work to our bene-
fit if our policymaker sought to move us from the bad blue equi-
librium to the good red equilibrium. In this case, a policymaker
might correctly want to try to trigger a norm cascade, which
looks a lot like swooshing down the phase transition to the good
equilibrium. Here, little effort would be rewarded quickly, and
the reward might be vastly disproportionate to the effort ex-
pended.

When might this analysis be relevant? Imagine norms com-
peting over time. A norm or standard becomes entrenched at one
time, and appropriately so: it represents the socially efficient
outcome. We converge on the red equilibrium and everyone plays
red. Things change. A new norm or standard is now superior to
the old standard, but everyone is still playing the old standard.
(Recorded video technology, with VCR tapes representing the old,
locked-in standard, and DVD the new superior technology, may
represent this situation today.)

Indeed, the law itself may help entrench a particular stan-
dard and thereby make it more difficult for our players to move
to a new, superior equilibrium. For example, if custom is a good
defense against a charge of negligence, there will be little reason
for a new custom to evolve. Indeed, the status attached to the
pre-existing custom further entrenches it against newcomers.

The models proper will not let us get from the old standard
to the new standard, and even if a small number of folks start to

# We do get stories in the chaos literature of models that move to the edge of chaotic
behavior, see Kauffman, At Home in the Universe at 26-29 (cited in note 65), but that is a
far cry from where we are now.

® Of course, my guess is that politicians at either end of the spectrum would say that
their worthy opponents routinely display such bullheadedness in promoting policies!
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experiment with the new option, they may be too few and too
dispersed to move the system to the new, better equilibrium. To
track our charts, it is as if we have 98 percent or 99 percent
playing the old, inferior standard, and only 1 percent or 2 percent
playing the new standard. As the charts demonstrate, even in the
face of a substantial improvement—remember that when b =
1.65, it represents 65 percent more value compared to 1—we
might end up in the wrong equilibrium. Our policymaker now
may be able to push us down the phase transition to the new
equilibrium, where only a small shift in densities will be re-
quired.

C. Seeding Norm Clusters

If we take the model literally, the government may use a
more direct route to effect the transition: seed norm or standard
clusters. Given a cluster of the right size—for example, when b =
1.65 start with six red players clustered together in a sea of
10,195 blue players—the model will converge to the appropriate
social equilibrium, even if the absolute number of players of the
strategy in issue is almost zero. Look at the development of the
model as seen in the six snapshots of its evolution in the color in-
sert at Figures P18 to P23.%°

Gerry Mackie provides a striking example of the power of
seeding norm clusters in an account of the end of footbinding in
China.”” Mackie argues that footbinding should be understood as
a Schelling convention at work in the marriage market. China
appears to have been locked into this convention for centuries,
notwithstanding recognition of the harmful consequences of the
practice. The practice, however, vanished in a generation. Mackie
cites data showing, for example, that in Tinghsien, 99 percent of
the women were footbound in 1889, 94 percent in 1899, and vir-
tually none in 1919. This dramatic shift is easily understood as a
rapid shift from an inferior to a superior equilibrium, a norm
cascade as we have described it.

What accounts for the change? Local missionaries in China
established the first antifootbinding society in 1874. Families
pledged that they would not footbind their daughters and that
they would not let their sons marry the footbound. This local
convention created sufficient density to make it self-sustaining—
this is our norm cluster—and these clusters grew until the old

¥ To see this evolution directly, play the video at my website (cited in note 52).
¥ Gerry Mackie, Ending Footbinding and Infibulation: A Convention Account, 61 Am
Sociological Rev 999, 1015 (1996).
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convention was overrun. This is a dramatic example of the power
of seeding norm clusters, but it also emphasizes that the gov-
ernment need not play a unique role in creating these clusters.
Any number of groups can play this role: the government cer-
tainly can, but so can charities and for-profit entities.*

This approach is probably more important in cases in which
the established, but appropriate, norm or meaning changes, and
we need to navigate from the formerly appropriate norm to the
new norm. Norm seeding is a low-risk strategy. If the govern-
ment seeds an inefficient cluster, it will die, and little will be
lost. If the new norm is superior to the old norm, however, the
artificially created norm cluster will thrive and spread. This
analysis suggests that the government should embrace test poli-
cies or norms or take steps to foster social meanings in particular
local contexts as a way of testing whether a superior approach
can take root and spread.

D. Instruments for Policymakers

Finally, the analysis of the variations on the model suggests
possible instruments to facilitate adoption of good norms. These
are all directed at expanding the basin of attraction for the supe-
rior equilibrium, so that the initial starting conditions are less
likely to influence the ultimate outcome of the system. First,
larger payoff neighborhoods appear to do a better job of converg-
ing on norms that represent modest improvements (say, 1.15<b
< 1.33).*° As discussed before,” creating instrumental connected-
ness among individuals within a neighborhood may be difficult,
but this model suggests that success yields substantial returns.
Second, more refined decisionmaking—averages rather than a
single, highest value—also supported success for lower values of
b. Third, additional information usually increases the likelihood
of success for the good norm. A strategy of providing information
from beyond the boundaries of the payoff neighborhood generally
increases the chance of converging on the good norm.

¥ Anti-dueling societies played a similar role in the decline of dueling in Europe, see
V.G. Kiernan, The Duel in European History 216-17 (Oxford 1988), cited in Posner, 144 U
Pa L Rev at 1740 n 108 (cited in note 8); and in the Old South, see Jack Kenny Williams,
Dueling in the Old South: Vignettes of Social History 64 (College Station 1980), cited in
Warren F. Schwartz, Keith Baxter, and David Ryan, The Duel: Can These Gentlemen Be
Acting Efficiently?, 13 J Legal Stud 321, 329 n 27 (1984).

¥ But see Berninghaus and Schwalbe, 29 J Econ Behav & Org 57 (cited in note 44).

% See Section 11.A.2.
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CONCLUSION: LIMITS AND FUTURE DIRECTIONS

The recent interest in norms and law almost certainly dates
from Bob Ellickson’s important work on Shasta County.” This
work started as an inquiry into the Coasean Irrelevance Proposi-
tion and emerged as a separate Ellicksonian Irrelevance Proposi-
tion. The bastardized version of the Coase result states that the
allocation of property rights is irrelevant, as parties will recon-
tract efficiently. Law plays very little role, at least in a world of
low transactions costs. Now Coase himself would probably con-
tend that the point of The Problem of Social Cost was precisely
that transaction costs were important, and that the role for law
needed to be understood in a particularized context of pre-
existing transaction costs. In contrast, Ellickson’s investigation
of cattle in Shasta County led him to conclude that law was ir-
relevant when robust local norms could evolve.”” Neighbors did
not know the law, did not use it to their advantage or disadvan-
tage, and resolved their disputes in full sunlight—no bargaining
in the shadow of the law for these folks. Law simply did not mat-
ter in a community with well developed norms.

More recent work takes as a given that norms, social mean-
ings, and social roles matter enormously, and turns to the role
that government might play in shaping these essential features
of society.” The central concern of this work is that too often so-
ciety will end up with weak norms, or, even worse, norms that
are affirmatively harmful. Individuals who recognize the problem
will be trapped and will lack a mechanism to move the collective
to the superior norm.

This is certainly possible, but the computer experiments de-
scribed here suggest local interactions will often lead to conver-
gence on the superior norm. The benefits obtained by clusters of
individuals who successfully embrace the better norm will often
lead that norm to be propagated throughout the entire popula-
tion of players. Again, this is not to say the government is irrele-
vant. The simulations identify at least three policy instruments
of interest—the scope of local connectedness (my payoff neigh-
borhoods); the information available to the players (the informa-
tion neighborhoods); and the manner in which individuals proc-
ess available information (the decision rule)—plus a strategy of
seeding norm clusters so as to perturb an existing equilibrium to
test whether a superior equilibrium will take root and spread.

°* See Ellickson, Order without Law §§ 1-6 (cited in note 13).
% 1d.
% See Section 1.B.
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The current paper suffers from at least five weaknesses, all

of which suggest directions for future work:

The players do not contest the choice of norm. How many po-
tential norms benefit everyone identically? In contrast, how
often will the norm chosen have substantial consequences for
individual players (or player types) even if all benefit from a
single norm? The traditional Battle of the Sexes is exactly
this situation: the players want to coordinate on a single
choice but each cares about the particular choice made.* Mi-
gration will also become an important feature of these mod-
els, as players may reduce the conflict over norms through
separation by type.

Competition between norms has been restricted to only two
norms at a time. As suggested before, this model may cap-
ture many social contexts accurately, but it almost certainly
does not track all commercial dealings.”

My models are awfully static for dynamic models. There is
no baseline of change, either through replacement of players
or spontaneous mutation or experimentation. The zone of
mixed play may not be as sustainable when baseline change
is introduced.

The spatial game setup itself tends to obscure the way that
information is transmitted in these models. There are no
holes in the lattice, meaning that there is a player at every
spot. Connectedness may matter in important ways. Full
connectedness maximizes the chances that a good strategy
will propagate throughout the entire lattice. Separation of
clusters would introduce physical barriers to the spread of a
good strategy, and might create situations in which both
strategies would thrive in physically distinct locations.
Whether a good strategy would percolate throughout the en-
tire lattice will undoubtedly depend on how connected our
lattice is. At the same time—and this works in the other di-
rection—the players in the spatial game do not move about.
Movement serves as another way in which information is
transmitted—in which strategies are spread. A richer model

* For a discussion of the “Battle of the Sexes,” see note 49.
* See text accompanying note 7. Moving to a continuous strategy space has been

shown to have substantial consequences for the results in spatial games. See Bernardo A.

Huberman and Natalie S. Glance, Evolutionary games and computer simulations, 90 Proc
Natl Acad Sci 7716, 7717-18 (1993) (showing that the results of digital simulations re-

garding territoriality and cooperation in the prisoner’'s dilemma differ greatly when time

is continuous rather than discrete).
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would incorporate holes in the lattice (and thus explicitly in-
troduce something akin to networks and the extent of con-
nectedness) and allow movement by the players. This would
allow a more refined analysis of information and strategy
transmission.

* Finally, there is no cost of switching strategies in these
games. In real life, switching strategies is costly (have you
switched from a Macintosh to a Wintel machine lately?).
Friction of this sort would certainly slow down the move to
new strategies. Whether it would alter the outcomes in other
important ways awaits more work.

As this suggests, this article is just a first step down a path
of uncertain length. The silicon models set forth here make it
possible to test the importance of a variety of factors for the evo-
lution of norms. Given the pervasive role that norms play in
shaping the contexts in which we act, it is hardly surprising that
norms have become the focus of so much attention. It may be
possible for the law to play a role in shaping norms and thereby
alter the backgrounds against which much activity takes place.
Whether we think legal intervention in norms is appropriate
should turn on whether we believe that private ordering will re-
sult in inefficient or positively harmful norms. The message of
this article, where individuals have a shared interest in the
norms, is that large-scale intervention is unjustified, as individ-
ual decisions turn out to aggregate nicely and to coalesce around
the appropriate norms. Small-scale intervention—norm pertur-
bation—may be appropriate, and a strategy of norm seeding may
be an effective way for the government to test at little cost
whether a norm improvement should be and can be effectuated.
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